
C O P i L
c a m b r i d g e o c c a s i o n a l p a p e r s in l i n g u i s t i c s

Volume 6, Article 5: 131–175, 2012 | ISSN 2050-5949

COMPARATIVE METHOD ALGORITHM
˚

s o p h i a g i l m a n

University of Cambridge / Yale University

Abstract In this paper, I outline a way of automating the Comparative

Method, with the aim of expediting the process and providing a new outlook

on the ’reality of reconstructions’ controversy. Taking as input word lists in

IPA format, the Comparative Method Algorithm (henceforth CMA) walks

through the steps of the classic comparative method in a transparent way

and outputs reconstructions of words in the proto-languages and the proto-

language’s sound system, along with the cognate sets and correspondences

that were found in the process. Furthermore, at each step, the algorithm

provides a degree-of-certainty estimate (DOCE) for its conclusions, which

can be used as an evaluation of the ’reality’ of a reconstruction. To help deal

with the issue of a uniform reconstructed language, the algorithm also outputs

more than one option for each reconstructed word and proto-language sound

system, using the DOCE estimate to determine which candidates are best.

1 Preliminaries

1.1 Two goals of the Comparative Method Algorithm

In the last few years, several attempts have been made to automate parts of

the phonological comparative method1, a process historical linguists use to

˚ I would like to thank everyone who contributed to and made this project possible: Moreno
Mitrovic, my supervisor, without whose help this project would never have gotten off the
ground or been completed. Melanie Bell, my second supervisor, for all of her help with
the phonology aspects of this project. Mattis List, Jeff Mielke, Sven Grawunder, Juliette
Blevins, Andy Wedel, and Mikael Parkvall for kindly responding to my queries about the
current states of various databases and projects described in this paper. Mattis List for all of
the e-mail discussion and advance information on his forthcoming article. Conrad Nelson and
Olga Gilman for discussion of algorithmic ideas. My friends and family (especially Mihoko
Takeuchi) for putting up with endless and incomprehensible rants about the Comparative
Method Algorithm.

1 There have not yet been attempts to automate morphological or syntactic reconstruction,
nor will I attempt to do so in this paper. As Bourchard-Cote et al. point out, “phonological
changes are generally more systematic than syntactic or morphological changes,” and it is
only this systematicity that makes automation possible (Bourchard-Cote et al. 2008: 1).
The next few years, however, may see a development of automations of the moprhological
or syntactical aspects of the Comparative Method.

©2012 Gilman
This is an open-access article distributed by the Department of Theoretical & Applied Lin-
guistics, University of Cambridge under the terms of a Creative Commons Non-Commercial
License (creativecommons.org/licenses/by-nc/3.0).

http://www.ling.cam.ac.uk/COPIL/
http://creativecommons.org/licenses/by-nc/3.0


Gilman

reconstruct sounds and whole words in the parent- or proto- language of a

given set of related languages. This comparative method has been the “single

most important tool” of the historical linguist since the 19th century and has

seen “great success,” especially in the realm of phonology (Trask 1996). While

the comparative method is effective, it is also exceedingly time-consuming and

faces several significant theoretical issues. So far, computational methods have

been applied only to the first of these problems: various algorithms have been

designed to model various parts of the comparative method and thus speed up

the process (e.g. Oakes 2000; Kondrak 2002; etc.).

Following in their footsteps, I present here a Comparative Method Algo-

rithm (henceforth CMA) that models most of the classic comparative method.

A central goal of the CMA, like with earlier projects, is to expedite the process

of reconstruction more than was possible with previous algorithms by adapt-

ing the best aspects of said previous methods and by making use of recently

created databases of diachronic change. However, as I hope to show, the CMA

can not only expedite the linguist’s work considerably but also help provide a

solution to one of the main problems with the classical comparative method

— evaluating the reality of reconstructions. In what follows, I describe this

problem further (section 1.2) and present in brief the two solutions that the

CMA proposes (section 1.3). With these goals and solution ideas established,

I will then describe the general scope of the CMA project(section 1.4): what

the input into the CMA would be (section 1.4.1) and the extent to which the

CMA models the classic method in its entirety (section 1.4.5).

1.2 The ‘reality of reconstructions’ problem

The issue of assessing the reconstructions generated by the comparative method

haunts the classical literature on the topic (Trask 1996; Crowley 1998; Fox

1995). In what sense do reconstructed proto-words such as ˚plHno actu-

ally represent a real language that someone somewhere once spoke? (Trask

1996). Formalists argue that such reconstructed forms are mere short-hand for

describing what related languages have in common. Others believe they re-

flect something closer to true phonetic forms. Most believe that reconstructed

forms have some unspecified (and unspecifiable?) degree of phonetic reality

(Trask 1996). None of these answers are particularly specific — the question

is essentially unresolved.

Moreover, reconstructed forms are unrealistic in at least one respect: there

is only one form reconstructed for any given semantic meaning. In other words,

reconstructed forms create the illusion that language is uniform, that it has

no dialects — a clearly false statement (Pulgram 1959). But the mechanical

Comparative Method can, by definition, yield only one form for each word.

132



Comparative Method Algorithm

The Pulgram dilemma lies in interpreting this single output: is that form

representative of a particular dialect, an underlying form, some cross-dialect

average, or none of the above? There seems to be no consensus on the answer

to this question or on the reality of reconstructions in general.

1.3 What kind of a solution does the CMA propose?

One of the main goals of the Comparative Method Algorithm I develop in

this paper is to provide a new way of looking at these problems (the other

is expediting the process). I hope to do this through two innovations in my

algorithm: Degree of Certainty Estimates (henceforth DOCEs) as described

in sections 1.3.1 and 1.3.2 and a multiple output version of reconstruction

(section 1.3.5)

1.3.1 The Degree of Certainty Estimate

The basic idea behind the Degree of Certainty Estimate (adapted from a sim-

ilar but inimplemented idea in Steiner et al. 2011) is to provide a sort of

empirical measure of how real a reconstruction is. For example, if four related

words in four different daughter-languages all start with a /t/, a linguist would

be fairly confident in reconstructing a /t/ in the parent-language. Moreover,

all but the most determined formalists would likely agree that the sound in

the parent-language was a /t/. In such a case, the DOCE would be very high.

On the other hand, if the first sound in each of the four daughter-languages

was different (e.g. /h/, /s/, /z/, and /S/), the linguist would be less confident

and the formalists might argue that the reconstruction is less likely to rep-

resent a real sound. The more compelling the evidence (and thus the higher

the DOCE), the more likely the linguistics community would be to accept the

reconstruction as reflecting an actual reality.

Of course, in the classic (i.e. performed by human) Comparative Method,

the decision making process is more complex than in the simplistic example

above; it consists of a series of steps, at each of which the quality of the evidence

(and thus the confidence of the linguist or algorithm) may vary. Much like the

human historical linguist, the CMA walks through these steps, and, at each

step, the CMA not only finds an answer (e.g. pick a proto-sound) but also

provides the DOCE, an estimate of how good the evidence involved in this

particular decision was. Combining the DOCEs from all the steps, the final

DOCE associated with the reconstruction will thus reflect the quality of the

evidence for that reconstruction, and, by extension, be a measure of how ‘real’

a reconstruction is. Of course, calculating the DOCE for reconstructions is

not a way to put an end to the ‘reality of reconstruction’ debate, but such an

133



Gilman

empirical approach may provide a new way of looking at the situation.

In order for the DOCEs of the CMA to reflect with any degree of accuracy

the reality of reconstructions by the classic Comparative Method, the CMA

must, as much as possible, both model the comparative method minutely

(with all of its flaws) and remain otherwise pre-theoretical. The next section

is dedicated to discussing these two heuristics in more detail.

1.3.2 Two Heuristics for CMA design

1.3.3 Modeling the Method precisely — flaws included

As stated earlier, one goal of the CMA and the DOCEs in the CMA is to

determine how well reconstructions reflect a previous reality. In other words,

the DOCEs calculated by the CMA are, in a sense, evaluating the classical

comparative method. To meet this goal, the CMA will attempt to model

the classic Comparative Method (both strong sides and flaws) as closely as

possible, so that the DOCEs actually reflect the effectiveness of the classic

method, not just that of the CMA.

As Moreno Mitrovic (personal communication) points out, making an al-

gorithm to evaluate a method does not necessarily require one to make the

algorithm model the flaws of the original method: there may be ways to fix

the flaws of the method without ruining the evaluative aspect. On the other

hand, modeling the method precisely is a simple and certain way of making

accurate evaluations. Finding approaches that both retain the evaluative as-

pect and amend the method would thus be a good subject for future work,

but such work is beyond the scope of the present paper.

The basic result of this decision is that the present version of the CMA does

not attempt to solve any of the issues with the classic Comparative Method

except attempting to resolve the ‘reality of reconstructions’ debate. Thus, for

instance, the Comparative Method makes some flawed assumptions (e.g. that

language splits are sudden as per the tree model hypothesis) and that sound

change is always regular (the Neogrammarian hypothesis) (Campbell 1998).

The CMA will make the exact same assumptions, because to depart from them

would be to depart from modeling the Comparative Method.

The only exception to this rule is that the CMA is able to provide a

resolution to Pulgram’s Dilemma, because this resolution in no way affects the

calculations of the DOCEs (discussed in detail in section 1.3.5).

Overall, however, the CMA must strive to model the classic method as

closely as possible, and this heuristic will come into play in many of the design

decisions discussed in the implementation sections (sections 2 and 3).

134



Comparative Method Algorithm

1.3.4 Remaining Pre-Theoretical

Moreover, it is insufficient for the CMA to merely model the Comparative

Method precisely — there are several aspects of the Comparative Method that

are simply underdescribed. Thus, for example, a human linguist compares

sounds to determine how ‘similar’ they are or how likely one is to become

another (i.e. the ‘naturality’ of sound changes). The classic descriptions of

the method (e.g. Trask 1996, Campbell 1998) do not explain how that is to

be done. A human linguist has intuitions and experience to guide him. The

algorithm, on the other hand, is equipped with neither and must perforce find

some way of operationalizing these decisions.

In doing so, however, the CMA must, as much as possible, avoid intro-

ducing any theoretical or other assumptions not already in classic Compara-

tive Method. Any new assumptions will necessarily affect the DOCE calcu-

lations, and thus the DOCEs will then reflect the effectiveness of the Com-

parative Method only given that assumption, rather than the effectiveness of

the method in general. Furthermore, if the CMA were to adopt any particular

theoretical approach (e.g. sounds are similar if they share certain articula-

tory features), the DOCEs would become immediately much less useful to any

linguists not subscribing to the given theory.

Therefore, since the CMA should ideally reflect only the effectiveness of

the Comparative Method and since its output should, ideally, be useful for

any historical linguist, the second heuristic in CMA design is to remain pre-

theoretic, attempting to use only tools approved by a linguistic consensus and

relying as much as possible on empirical data.

Both of these heuristics (modeling the method as closely as possible and

remaining pre-theoretic) will be assumed from here on out and be used in

design decisions throughout the rest of this paper. Having established these

heuristics, we can now turn to how the CMA proposes to deal with second

issue (after the ‘reality of reconstruction’ debate) that it is meant to provide

a new outlook on: Pulgram’s Dilemma.

1.3.5 Multiple Outputs - resolving Pulgram’s Dilemma

Pulgram’s dilemma, as described earlier, is that the classic Comparative Method

only produces a single reconstructed form for any word, which cannot accu-

rately reflect the reality that languages are by no means uniform. One po-

tential resolution would be to have the CMA produce multiple reconstructed

forms. With the DOCE estimates, this solution could be actualized without

tampering with any other part of the classical Comparative Method.

Consider again the situation where the four daughter-words for which the

135



Gilman

CMA must reconstruct a proto-form begin with four different sounds (e.g.

/h/, /s/, /z/, and /S/). The CMA would consider several different options

for the proto-sound and assign to each one a DOCE estimate. If only one

output is required, the CMA will simply output the proto-sound with the

best DOCE. However, to resolve Pulgram’s Dilemma, the CMA instead gives

several variants for the proto-sound: any proto-sound option whose DOCE

clears a certain threshold is output to the user or just any proto-sounds with

tying DOCEs. This way, each reconstructed proto-word could have several

possible variants, modeling the lack of uniformity in a real language. As Steiner

et al. (2011) point out, such multiple outputs based on DOCEs (or, as they

say, “statistical output”) would be “an even better approximation of the proto-

forms as traditionally possible.” Whether this variety will be in any way a

satisfactory model of dialectal variation remains to be seen, but, much like

with DOCE estimates, the CMA at least offers another innovative way of

approaching the problem.

Thus, by using DOCEs and giving multiple outputs, the CMA provides a

novel empirical approach to the issues of the ‘reality of sound reconstructions’

and ‘Pulgram’s Dilemma’. With these basic solutions in mind, we now take a

closer look at the scope of the CMA project: what is the input into the method

and how much of the Comparative Method does it model? (section 1.4).

1.4 The Scope of the CMA

As stated in the introduction, all the previous efforts at automating the com-

parative method model some, but not all, the steps of the method. The CMA is

designed to model nearly the entire method, more than any previous endeavor

save Oakes’ in 2000. However, it is still up to the user linguist to prepare the

input data. Because the CMA does not, after all, possess all the knowledge of

the user linguist, this data must be prepared in a very specific way, and sec-

tion 1.4.1 explains the three main requirements imposed on the word lists the

user feeds into the algorithm: IPA orthography (section 1.4.2), morphologi-

cally simple ’words’ only (section 1.4.3), and no borrowed words (section 1.4.4).

After the input requirements for the CMA are thus both stated and explained

in section (section 1.4.1), I proceed to explain in slightly more detail what the

full model of the comparative method offers (section 1.4.5).

1.4.1 Input into the CMA

The basic input into the classical comparative method is a set of word lists from

languages which the linguist suspects to be related. Thus, the user linguist

must first have some hunch that a set of languages are related. Then, he

136



Comparative Method Algorithm

must craft the word lists that are the input into the CMA, where a word list

in any given language contains words, stems, or morphemes in together with

their meanings. These word lists, notably, must be more carefully pruned than

those a human linguist might use. Specifically, all the word lists must be in

the IPA orthography (further discussed in section 1.4.2), they must be simple

morphological forms unless the user is comfortable with unparsed forms being

used (section 1.4.3), and borrowings must be excluded or the possibility that

they may muck up the analysis must be permissible (section 1.4.4).

Furthermore, since the data is still likely to be less than ideal, the user

should associate a DOCE with the data that would reflect the following con-

siderations: how likely is it to be flawed, to what extent does it have uncer-

tainties, what is the chance that borrowings remain, and are any of the words

likely to reflect to onomatopoeia (such words are likely to be similar to words

in other languages and yet not be cognate with them) (Trask 1996). All of

these are considerations which the algorithm cannot calculate, and, since the

final DOCE should still reflect them to be maximally useful, the user should

supply that information. The user would thus, depending on his preference,

be able to specify a DOCE for the whole data, but can also provide special

DOCEs for specific words (e.g. if they might be borrowings), and/or specific

characters (e.g. if the user is uncertain that he picked the right IPA charac-

ter for some character in the field notes). Any overall DOCEs will simply be

averaged over all the smaller parts (e.g. the DOCE for the whole data will be

averaged over all characters). Since, at the minimum, the user only needs to

provide their best guess at a DOCE for the whole data, this should not be too

onerous.

Unlike the requirements to specify DOCEs, the requirements for the wordlists,

however, may well seem inconvenient. Unfortunately, very similar require-

ments usually hold for the currently available algorithms. In the next three

sections, I will explain why each of these conditions must hold in the CMA:

section (section 1.4.2) discusses the IPA requirement (section 1.4.3), addresses

the parsing requirement, (section 1.4.4) deals with constraint against including

borrowed words.

1.4.2 IPA orthography

All reconstruction algorithms, including the CMA, are forced to require all the

input to be in the same orthography. Otherwise, the computer simply has no

way of comparing words from different wordlists, which is an integral part of

the comparative method. Some algorithms (e.g. Steiner et al. 2011) allow the

user linguist to use any orthography. Such algorithms, however, cannot take

into any relationships between particular sounds in their analysis, since the

137



Gilman

algorithm has no information on what sounds are represented by the orthog-

raphy. The CMA, on the the other hand, wants to model as closely as possible

the human linguist who considers such concepts as sound similarity when de-

ciding if two words are likely to be cognate or look at the general likelihood of

a particular sound change (e.g. he considers that /s/ becomes /h/ more often

than /h/ becomes /s/) when trying to pick a proto-phoneme. If the CMA is to

have any knowledge that could imitate a linguist’s experience and intuition in

such considerations, all the input must be in a single orthography - the same

orthography as the one used in giving the CMA said knowledge (see sections 2

and 3 for more discussion of how such prior knowledge is incorporated into the

CMA). Since the IPA is the most universally accepted system, it is the natural

candidate (IPA Handbook 1999). Furthermore, at least for this first version of

the CMA, the IPA, if it is the system picked, should be used without diacritics,

because if (for instance) one were to try to calculate the probability of change

between any two IPA symbols with any two diacritics, one would need to store

a more probabilities than is within the power of any modern processor. (For

a more complex discussion on choosing the IPA as the orthography for the

CMA, please see Gilman (2012b)).

1.4.3 Why input words must be morphologically simple

The human linguist looking at field notes usually parses the words, separating

out the morphemes and performing the Comparative Method on each mor-

pheme individually. The CMA, unlike the human linguist but like all other

reconstruction algorithms,2 is unable to identify prefixes, suffixes, or other

morphemes (i.e. to do morphological parsing). Thus, if words are not mor-

phologically simple, they will still be treated as such by the CMA, and the

reconstructions may reflect this mistake.

The basic reason for this is that the human linguist usually has some prior

knowledge about the language (or at least related languages) as well as about

general morphological theory. The CMA cannot have any information about

the former, and the current model does not have any information about the

latter. In theory, it would be possible to create a morphological parser that

2 Many current algorithms use a method called local alignment to be able to find cognates in
word lists despite possible complex morphology (e.g. List 2012; Steiner et al. 2011). This
method essentially ignores sequences that do not tend to match up; for example, if dealing
with the words xi-bar-te and bar-ko it would align the two ’bar’s and ignore the rest).
Ideally, we could use such methods to discard or separate out the different morphemes of
any given word. However, such a method will very often isolate parts of morphemes and
thus cannot be used for actual word parsing. Because of this, the reconstruction step must
still operate on the full input word, and thus the full input word must be morphemically
simple or treatable as such.

138



Comparative Method Algorithm

works on any language without any prior information, and some work has been

done in this area (e.g. Kim et al. 2011). However, such algorithms tend to use

much bigger word lists than those normally used in the comparative method

(e.g. 100,000 words in the Kim et al. algorithm) making it difficult to apply

such algorithms in the CMA (Kim et al. 2011). Therefore, the reconstruction

work done by the CMA is purely phonetic and the input must be adjusted

accordingly.

1.4.4 Why the input must be vetted for borrowings in advance

Borrowing is one of the main issues within the classic Comparative Method:

when two words are similar enough to be cognates, a linguist must be sure

to check that neither of the words is actually a borrowing from the other lan-

guage, as that is a frequent alternative explanation for such similarity (Trask

1996). To avoid this problem, linguists commonly use word lists with only

the vocabulary items that tend to be resistant to borrowing (e.g. Swadesh

lists) but caution is still necessary (Trask 1996). Identifying the borrowings

that might lurk even in such lists is a task even the human linguist often has

difficulty performing and that often involves much background knowledge. As

Campbell puts it, linguists “must resort to other techniques which are not

formally part of the comparative method for dealing with borrowing” (1998:

147).

Of the purely reconstructive algorithms currently available, none model

these techniques. Steiner et al. argue that “loanwords should in principle be

detectable [. . . ] by using characteristic sub-regularities in the sound correspon-

dences as indications for different strata in the lexicon” (2010, p.4) but do not

provide a way to automate this. On the other hand, the work of Ringe et al. in

the related realm of phylogenetics suggests ways of tracking borrowing (2006).

While it would be in principle possible to integrate phylogenetics methods into

the CMA, this has not yet been done and remains a task for the future. Thus,

currently, the CMA does not provide a way of tracking borrowing and the user

linguist must prune the data for borrowing himself.

Thus, even though the CMA places stringent requirements on the input

data, these requirements are the same as those for all the currently available

algorithms that offer a similar level of analysis to the CMA. With these not

outstanding requirements for input data, however, the CMA models more of

the comparative method than any previous algorithm (with the exception,

again, of Oakes 2000).

139



Gilman

1.4.5 What the CMA Models

Given the input data, the CMA models the entirety of the comparative method.

The method itself can be roughly divided into two steps: finding sets of cog-

nates (related words in the daughter languages) and consistent sound cor-

respondences,3 and reconstructing various aspects of the languages: proto-

sounds, proto-sound systems, and proto-words (Durie and Ross 1996; Fox

1995). The first of these steps has seen significant work in the last few years,

and the main goal of the CMA is to advance the state of the art by integrat-

ing all the best aspects of existing algorithms and using previously unused

diachronic databases (see section 2 for further discussion)

If the first step has been successfully modeled in the past, the second step

— reconstructing aspects of the proto-language — is nearly entirely unex-

plored. Bouchard-Cote et al. published a series of articles on the topic (2007,

2008, and 2009), but their method bears essentially no resemblance to the

classic comparative method. The only other attempt was that of Oakes in

2000, but this algorithm was fairly unsuccessful as both the author himself

and Kessler point out (Oakes 2000; Kessler 2005). One of the reasons for

this lack of success, as Kessler (2005) points out, was that Oakes’ methods

for evaluating how good a potential proto-sound is and more specifically the

likelihood of a given sound change were both fairly crude. This flaw the CMA

will attempt to remedy. On the other hand, there is a flaw that persists in the

CMA: the algorithm only models sound changes that involve one sound at a

time. Thus, sound changes such as metathesis (the transposition of characters

in a word, such as the /t/ and /s/ in ‘tangis’ and ‘sangit’), hapology (the loss

of a syllable followed or preceded by a similar sounding syllable), and redupli-

cation (the repetition of a certain part of a word emphasis, such as repetition

of the initial syllable for emphasis) cannot be modeled here (Oakes 2000; 236).

(To some extent, this problem also effects cognate identification, and none of

the algorithms available for that model those changes either). This defect, un-

fortunately, cannot be remedied by the CMA. On the other hand, the CMA,

coming nearly twelve years after Oakes, is able to take advantage of recent ad-

vances in theory to create an algorithm that models the human linguist more

closely, uses a more refined scheme for comparing sounds, and provides multi-

ple options for proto-sound system systems and proto-words (see section 3 for

further discussion)

Thus, the CMA, as described in sections 2 and 3, is an up-to-date algorithm

3 A ‘sound correspondence’ or ‘correspondence set’ is “a set of ‘cognate’ sounds; the sounds
found in the related words of cognate sets which correspond from one related language to
the next because they descend from a common ancestral sound. (A sound correspondence
is assumed to recur in various cognate sets).” (Campbell 1998, p.112)

140



Comparative Method Algorithm

that is able to model the entirely of the comparative method algorithm. This

algorithm successfully outputs several options for reconstructed sounds, proto-

forms, and the sound sound-system for the proto-language, all equipped with

DOCE estimates. Moreover, The CMA is thus by no means a black box: the

user linguist would also have access to the cognate sets and correspondence

sets, with their respective DOCE estimates. Because of this, the user-linguist

can use the CMA both to create reconstructions and to assist him/her through

any particular stage of the process.

1.5 Summary of §1

In this section, we have outlined the goals and scope of the Comparative

Method Algorithm, a computational implementation of the full classic phono-

logical Comparative Method. This CMA will be a new development in the

computational historical linguistics field in three different ways. First, while

there have been many efforts to automate the first step of this process (find-

ing cognates and correspondences), the CMA will be only the second effort to

provide a way of automating the entire method including the reconstruction

of proto-sounds, with the first being Oakes’ effort in 2000. Furthermore, the

CMA will output Degree of Certainty Estimates (DOCEs) for each proposed

reconstruction, and this will provide a new way of discussing the ’reality of

reconstruction’ issue. Finally, the CMA, unlike the classic method or any pre-

vious algorithm, will be able to generate several forms of any reconstructed

word, which would be a hypothetical solution to the issue of uniform recon-

structed languages.

In order for these goals to be met, the CMA must follow two heuristics in

its design: it must model the classic method as closely as possible and retaining

an empirical, pre-theoretic approach throughout.

Given that these are the goals and heuristics, we have also established the

input it requires. The CMA, as discussed in section 1.4.1, takes in monomor-

phemic word lists of potentially related languages in IPA orthography that

have been vetted for borrowings. Furthermore, the user provides a DOCE for

either the whole input set, individual words, or even individual characters, as

he might choose.

Armed with information about the goals, heuristics, and input into the

CMA, we can now look at the way the CMA implements both steps of the

classic Comparative Method: finding cognates and correspondences (section 2)

and reconstructing the proto-sounds, proto-words, and proto-sound system

(section 3).

141



Gilman

2 Cognates and Correspondences

The first step of the Comparative Method is the search for cognates and cor-

respondence sets, and the goal of this section is to propose an algorithm that

would accurately model the comparative method, be as pre-theoretic as pos-

sible, and calculate the relevant DOCEs along the way. As mentioned in the

previous section, there has been a considerable amount of literature on the

topic over the past nearly 100 years, and the main goal of the present proposal

is to show that an algorithm fitting those three heuristics can be assembled

from the various current proposals. Since my aim is mainly to prove that this

algorithm will meet all three heuristics, the focus will be on the way the al-

gorithm implements the work of the human linguist, not on the more purely

computational aspects of the algorithm. At any given step, I will provide at

least one example of implementation in the previous literature, however, to

illustrate that the task is plausible.

To contextualize the discussion, section 2.1 provides a detailed discussion of

how the human linguist approaches the topic. Thereafter, section 2.2 ascertains

the overall outline of the algorithm, after a discussion of the options available

in the literature. Finally, the last three sections ( 2.3, 2.4, and 2.5) concern the

salient steps and aspects of this algorithm and presents the CMA approach

in context of the literature. While many works will be referred to throughout

this discussion, four recent proposals that capture the main advantages of past

work and meet these criteria to some large degree will be used as the main

models for the CMA algorithm: Kondrak and Hauer (2011), Delmesteri (2011),

Steiner et al. (2011), and List (forthcoming) (in two different versions).

2.1 The method of a human historical linguist

Armed with a set of word lists in the hypothetically related languages, the

linguist searches for cognates and correspondence sets, using a somewhat re-

cursive process (List forthcoming). First, the linguist creates an initial list of

potential cognate words based on a number of factors. He considers the words’

similarity in meaning and form (i.e. sound and string similarity), being care-

ful to take into account the probability of chance resemblances (Trask 1996;

Wilkins 1995). He also looks at the plausibility of the phonological pathways

implied by his word pairings (i.e. if he pairs /het/ and /ket/, he considers

whether /h/ and /k/ could have come from the same proto-sound) (Fox 1995;

Wilkins 1995). In looking at plausibility, he is also considers the context of the

changes (including prosodic ones), since many sound changes are much more

likely in specific contexts (List 2012). In looking at these factors, he is also

careful to look into any possibility of faulty data as well the possibilities that

142



Comparative Method Algorithm

borrowings or onomatopoetic words may have found their way into his word

lists (Fox 1995). (In the CMA, these precautions are taken care of by the user

linguist).

Using the initial list of cognates, the linguist creates a list of the regu-

lar sound correspondences among those cognates. Hiding behind the word

’regular’ is again a list of factors that the linguist considers before adding a

correspondence set to his list: How sure is he that the words from which the

correspondence set came were cognate? across how many word sets does the

correspondence hold? How many languages of the ones considered does it

involve? (List 2012; Steiner et al. 2011).

When the list is complete, the linguist can edit or re-create the cognate

list, now using the correspondence sets, a more accurate measure than mere

similarity of form and meaning, as the basis of evaluating how likely the words

are to be cognate. As Trask points out, the great strength of the comparative

method is that the systematic sound correspondences, rather than more flimsy

measures, are the basis for similarity evaluation (Trask 2000 cited in List 2012).

Thereafter, he can again update the correspondence set list, and the process

continues until no further changes to either the cognates or the correspondences

are being made or until a sufficiently satisfactory result is reached (List 2012

forthcoming).

This is the process that the CMA is meant to model. In the next section,

the question of how the algorithm ought to work, on the most general level,

is addressed. Since, in the next section and thereafter, I propose to build the

algorithm on the basis of four recent models mentioned above, please refer to

Table 1 throughout the next four sections.

143



G
ilm

an

algorithm
aspect

Kondrak
and
Hauer

Delmestri Steiner et
al.

List
version 1

List
version 2

CMA

1 Number of
times data is
processed

once once recursive
loop until
conver-
gence

twice twice recursive
loop until
conver-
gence

2 Effects of
chance ac-
counted for
by

thresholds thresholds correspon-
dences
and
thresh-
olds

correspon-
dences
and
thresh-
olds

correspon-
dences
and
thresh-
olds

correspon-
dences
and
thresh-
olds

3 Similarity of
form measured
by

string
similarity

alignment alignment alignment alignment string
similar-
ity and
alignment

4 Semantic sim-
ilarity consid-
ered

no no yes no no yes

5 Learning from
correspon-
dences

N/A none yes yes yes yes

Table 1 Summary of the Differences Between the Algorithms Considered
in this section, including the CMA

144



Comparative Method Algorithm

2.2 The General Outline of the Algorithm

(See rows 1-2 of Table 1)

The human linguist, as we saw in section 2.1, employs a recursive (circu-

lar) pattern in the cognates and correspondences search. Most of the earlier

algorithms, however, do not do this, nor do they consider it: they fix on some

phonetic and/or ‘plausibility of pathway’ method for comparing words and es-

tablishing cognates, determine correspondences based on those cognates, and

consider the process done (e.g. Kondrak an Hauer 2011; Delmestri 2011; Oakes

2000). These methods thus do not consider regular correspondences in estab-

lishing cognates at all, thus not incorporating what Trask calls the chief ad-

vantage of the comparative method (1996). Moreover, using correspondences

is one of the main ways the comparative method avoids falling for chance re-

semblances between words, and thus these algorithms face additional danger

in that realm — they try to avoid chance resemblances only by setting high

thresholds vis a vi how similar the two words must be (see row 2 of Table 1).

In addition, most algorithms entirely ignore semantic similarity, though both

sound similarity (i.e. similarity of form) and ‘plausibility of pathways’ may be

included. An alternative method (used by List 2012) is to establish cognates

at first based purely on sound similarity measures, determine correspondences,

and then re-determine cognates incorporating the new data. This method is

obviously better but still considers the data only twice and does not consider

semantic similarity.

Finally, Steiner et al.’s algorithm remedies these faults. Their algorithm is

similar to List’s, except that it is equipped to continue iterating through the

cycles until satisfaction is reached. With slight modification, it could also be

equipped to stop only when no additional changes are made. This would then

be the more accurate model of the human linguist, who may check his cognate

list against his correspondences more than once. Furthermore, Steiner et. al’s

algorithm takes into account similarity of meaning, which is also done by the

human linguist. Thus, the Steiner et al. (2011) algorithm will be the basic

model used in the CMA.

In the next few sections, I will present the detailed model of the CMA algo-

rithm for finding cognates and correspondences, following the general outline

in Figure 1.

Thus, the algorithm will first look at all the pairs of words in the word lists

to compare their form (section 2.3) in two different ways (by looking at string

similarity (section 2.3.1) and by performing pair-wise alignment (section 2.3.2))

before determining a way to combine the two methods to give each pair of

words a combined DOCE score (section 2.3.3). When all words are paired

and each has a determined DOCE for its alignment, each word pair will also

145



Gilman

Figure 1 Outline of the CMA Cognates and Correspondences Algorithm

be measured for semantic similarity (section 2.4), as a human linguist would

consider it, and this measurement will be added to the word pair’s overall

DOCE. Finally, the word pairs will undergo multiple alignments, in which

their individual DOCEs will be used to combine word pairs into larger cognate

groups, which will then be aligned to generate the set of correspondence sets

(section 2.5). Once the correspondences are found, the algorithm can learn

from them (section 2.6) and then the process restarts. The difference is that

the scoring scheme used to compare the forms of the word pairs now has

146



Comparative Method Algorithm

information from the previously found correspondence sets. This iterative

process can then continue until running it again generates no further changes.

What follows is the discussion of the specifics of these general steps, and,

throughout this discussion, the questions of how to remain pre-theoretic, how

to best model the comparative method, and how to calculate the relevant

DOCEs will also be addressed.

2.3 Form Similarity

(See row 3 of Table 1)

The first step of all such algorithms is to compare the words in terms

of form, as that is the most important measure, until sound correspondences

become available. There have been two major types of approaches to mea-

suring suc: looking at string similarity alone and performing alignment with

a sound similarity scoring scheme (Delmestri 2011). Both are effective and

both model the human linguists in different ways, so that, after discussing

both (section 2.3.1 and 2.3.2), I will show a way to combine the two for the

purposes of CMA (section 2.3.3)

2.3.1 String Similarity

The first approach is to compare the words as strings of symbols, looking at

such measures as the number of n-grams (sequences of n letters) they share, the

number of identical first characters, etc.(Delmestri 2011). In such approaches,

any two characters are considered either different or identical, with no account

taken of degree of similarity. This last aspect of the method is, thus, a false

model of the human linguist, who considers how similar sounds are and even

how likely they were to come from the same sound. On the other hand, since

the human linguist does look at the words as strings as well as at individual

characters, it is plausible that such characteristics as number of identical initial

characters play a part in his decision. Furthermore, this kind of method is

purely pre-theoretic in terms of phonetic theory, as it does not even take

into account any specific way of comparing sounds — the only place where

theoretical bias (in the form of different phonetic theories) may enter into

the form similarity discussion. Finally, such methods have been reasonably

effective (Delmestri 2011).

Of the algorithms represented here, Kondrak and Hauer’s algorithm follows

this string similarity path. However, rather than taking any particular measure

(for, as Kondrak and Dorr determined, a group of string similarity measures

works better than any single one of them), Kondrak and Hauer found the

subset of sound similarity measures used in the literature that, when taken

147



Gilman

together, produce the best effect (Kondrak and Dorr 2004; Kondrak and Hauer

2011). (Specifically, they used the minimum edit distance, longest common

prefix length, number of common bigrams, the length of each word, and the

difference in length between the longer and the shorter word (2011: 867)). In

thus drawing from the past accomplishments in the area, Kondrak and Hauer’s

algorithm can be considered a sort of synthesis of previous work and will thus

be used as the CMA string similarity algorithm.

If this algorithm is used, how could the DOCE be calculated? This al-

gorithm outputs a ‘score’ for each word pair that indicates how good of a

cognate candidate that word pair is, based on the combination of these met-

rics (Kondrak and Hauer 2011). This score could be fairly easily normalized

to a percentage — a DOCE that would reflect the similarity of the words. No-

tably, however, Kondrak and Hauer’s algorithm (like all similar algorithms),

does not help determine correspondences — it only determines which words

are similar enough in form to be cognates. Nonetheless, since this kind of algo-

rithm is often represented in the literature, to some degree accurately models

the human linguist, is reasonably effective, and is pre-theoretic — it should

be included in the CMA in some form. Before considering how to best do

this, however, we want to look at the other type of form similarity algorithm

- pairwise alignment.

2.3.2 Alignment Models

The other type of approach is based on measuring similarity through alignment

and on the idea that sounds may have different degrees of similarity. This type

of algorithm allows the CMA to model the human linguist in a different way —

it can take account, like the human linguist, similarities between sounds and

even of probable pathways between sounds. All three algorithms (including

both versions of the List algorithm) besides Hauer and Kondrak’s belong to

this type. Any such algorithm has two main components: a scoring scheme

for comparing two sounds (discussed briefly in section 2.3.2) and a structural

aspect, which uses that scoring scheme to align words and find correspondence

sets (discussed in section 2.3.2) (List forthcoming).

The Scoring Scheme In creating the scoring scheme, the goal, as before,

is to model the human linguist as closely as possible while relying as much as

possible on empirical data and remaining pre-theoretic. Unfortunately, most

previous efforts do not fully meet either one or the other of these goals. Some

intentionally create a scoring scheme too simple to even approximately model

a linguist’s knowledge and intuition (e.g. Steiner et al. 2011); others commit

to a particular phonetic theory, not fulfilling the pre-theoretic requirement

148



Comparative Method Algorithm

(see Kessler (2005) for examples); yet others base their scoring scheme, to

some large degree, on intuition, which lacks the empiricism the CMA hopes to

embody (e.g. List forthcoming version 2).

Instead of adopting any of these options, the CMA proposes to create a new

scoring scheme based on recently developed diachronic databases: the Brown

et al. database of sound correspondences (Brown et al. 2011), the UNIDIA

database of sound changes recorded in the literature (DiaDM 2012), and En-

gstrand et al.’s database of sound changes recorded in the literature (Hamed

and Flavier 2009). Up till now, only List has uses a database-centered approach

(List forthcoming), but he only uses the sound correspondence database. The

CMA, on the other hand, will base its scoring scheme on three databases, thus

using a much broader scope of data. The use of these databases will allow the

CMA to create a scoring scheme that calculates the degree of sound similarity

based on empirical data and takes into account the precise context (i.e. IPA

characters or prosodic boundaries before and after the sound) of sound cor-

respondences, something that has not been done previously, because only the

UNIDIA and Engstrand et al. database, that have previously not been used,

record context at all. Unfortunately, since the focus of this paper is on the

flow of the overall algorithm, it is not possible to present the full details of

the scoring scheme calculations in this paper. Instead, further discussion of

the choice to not use phonetic theory, a detailed discussion of the databases,

and the method used to calculate the similarity degree are available in Gilman

(2012b). For the purposes of the current discussion, it is mainly relevant that

the CMA provides a new scoring scheme that is based on empirical databases

and that generates a degree of similarity between 0 and 1 for any two IPA

characters, as well as for some particular contexts of any given change (the

contexts in the scoring schema are those discussed in the literature as relevant).

The Alignment Algorithm Once the algorithm is armed with a scoring

scheme, it finds the phonetic alignment for all pairs of words. While there are

many options for this step of the algorithm, the differences between them are

mainly computational. They are all fairly pre-theoretic, and, while they do

model the human linguist in slightly different ways, a full discussion of this is

beyond the scope of this paper. Since the choice of algorithm is mostly compu-

tational, I propose to use the List model for the first version of the CMA, sim-

ply because it is open source and available online (http://lingulist.de/lingpy)

(List forthcoming). The general outline of the algorithm, however, is the same

across many different implementations, and it is presented as such below.

First, it considers each pair of words and uses dynamic programming4 to

4 Dynamic programming is essentially a method for breaking a given problem down into

149



Gilman

find the way to align the two words, so that they have the highest possible

overall score (List 2012). This overall score is calculated by combining the

scores associated with the different character pairings. Thus, for example, if

the words are /king/ and /pig/, the algorithm would align them as in Table 2.

Assuming that the similarity metric somehow took into account that /p/ and

/k/ are more similar than /n/ and nothing, the scores for each pair might

be something as in line three of Table 2, and the overall score would thus be

0.5+1+0+1 = 2.5

Word1 k i n g

Word2 p i [gap] g

Alignment score 0.5 1 0 1

Table 2 Aligning ‘king’ and ‘’pig’

If, on the other hand, the words were /king/ and /pit/, the alignment

would depend on whether the scoring scheme said /g/ and /t/ or /n/ and /t/

were more similar. If /g/ and /t/, were more similar, the alignment in the left

of Table 3 would be preferred to that in right of Table 3, since the score from

the left part of Table 3 alignment is better (1.8 rather than 1.6). 1.8 would

thus also be the resulting ’sound similarity’ score for that potential cognate

pair.

Word1 k i n g Word1 k i n g

Word2 p i [gap] t Word2 p i t [gap]

Alignment score 0.5 1 0 0.3 Alignment score 0.5 1 0.1 0

Table 3 Aligning ‘King’ and ‘’Pig’ in two Ways

This score, once it is calculated can be normalized against the ‘perfect

score’ (i.e. the score that the pair would have received if the words were

identical) and thus converted into a DOCE estimate for the ‘form similarity’

of the word pair.

Furthermore, in doing the alignment, the algorithm also identifies the reg-

ular sound correspondences necessary — they are simply the columns in the

small steps. For a good explanation of how dynamic programming is used in application to
alignment, see List forthcoming.

150



Comparative Method Algorithm

tables above. We thus have the lists of correspondences to be used in the next

step in the process, and the DOCE scores associated with them (i.e. their

individual scores). Before multiple alignment or semantic similarity are intro-

duced, however, we want to consider how best to combine these alignments

and DOCEs with the string similarity measures discussed in section 2.3.1.

2.3.3 Combining the string similarity and alignment models

Both of these types of algorithms have seen success in various recent work,

and they model slightly different aspects of a human linguist’s intuition about

similarity of form: the string similarity models reflect the ways a human might

look at the strings themselves and the alignment model focuses more closely

on sound similarity. Since the models are slightly different, it is also plausible

that they may work most effectively on slightly different types of word pairs.

Thus, both from a ’modeling the human’ and from an effectiveness point of

view, it would make sense to integrate both models into the CMA, something

that has not, to the best of my knowledge, been done previously.

Figure 2 Combining String Similarity and Alignment

151



Gilman

How can these two methods be combined? (Throughout the following

discussion, refer to Figure 2) Both algorithms calculate the similarity score

and DOCE for each word pair, so the combined DOCE score of the two word

pairs could be used to determine the overall DOCE. In combining the DOCEs,

it is probable that the two models should have different weights, depending on

which one is found to be more effective. Thus, hypothetically, an equation such

as (1) should be used to calculate the overall DOCE, where DOCEtotal is the

overall DOCE, weightSim, doceSim, weightAl, and doceAl are respectively

the weights and DOCEs associated with the string similarity and algorithmic

word comparison measures.

(1) DOCEtotal “ weightSim ˆ doceSim ` weightAl ˆ doceAl

These total DOCEs would thus reflect the similarity in form of any given

word pair. Having measured similarity of form for word pairs in this new way,

the CMA can now incorporate the semantic similarity of the word pairs into

their similarity DOCEs (section 2.4), before moving on to grouping the pairs

into larger cognate sets (section 2.5).

2.4 Semantic Similarity

(See row 4 of Table 1)

In addition to similarity in form, semantic similarity is always a factor in

the human linguist’s analysis. For the CMA, this factor is not particularly

significant, since the CMA mostly relies on word lists where meanings are

likely to be nearly identical. For Steiner et al., on the other hand, this is

especially important, since their algorithm takes as input any dictionary type

word lists, not just carefully pruned ones such as those usually used in the

classical comparative method. However, even in the classical method, it is

possible for words to have slightly different definitions in the word lists, and

thus there should be some way of calculating a DOCE penalty for potential

cognates whose meanings differ to some degree. The two solutions considered

here are those employed by Steiner et al. (section 2.4.1) and one employed by

Kondrak 2011 (section 2.4.2). The goal, as before, is to choose the method

that models the human linguist as closely as possible.

2.4.1 The Steiner et al. method

Steiner et al. essentially create matrices of meanings, where the distance be-

tween two meanings depend on how similar in form the words for them are

152



Comparative Method Algorithm

across many languages. The intuition behind this method is that “similar

meanings have a larger probability to be expressed similarly in human lan-

guage than different meanings” (Steiner et al. 2011: 10). The data set for the

many languages can be either “the word lists of [29] Indo-European languages

from the Intercontinental Dictionary Series (Key and Comrie 2007)” or taken

from the data set itself, if it is large enough (Steiner et al. 2011: 10). The

distance, thus calculated, can be converted into a percentage by normalizing

it against whatever distance is deemed sufficiently large to reflect no semantic

similarity. This percentage, then, which can be subtracted from the positive

DOCE estimate calculated for the two words during the ‘sound similarity’ step,

thus punishing semantically divergent words.

If we are to evaluate how closely this method models the human linguist,

two problems arise. The first is that semantic similarity is here, in a way, mod-

eled on similarity of form, and this assumption does not model accurately the

human linguist, who presumably considers shades of actual semantic meaning

(Trask 1996). In addition, the CMA should be usable for any language family,

which makes using data from the Indo-European languages only potentially

problematic. On the other hand, the input data sample, which is likely to

consist only of short Swadesh-like word lists and may feature only a few lan-

guages, would also be a bad source for creating such matrices. Thus, Steiner

et al.’s solution, while plausible, does not seem to be ideal for the CMA.

2.4.2 The Kondrak Method

An alternative solution, as developed by Kondrak, uses WordNet to calculate

a sort of semantic distance between the words (2011). WordNet includes a

lexical hierarchy of word senses expressing relationships such as hypernymy

and hyponymy, which allows one to track the distance between any two senses

(Wordnet 2012). The distance can be converted into a DOCE penalty, just as

it would be with the Steiner et al. method.

How accurately does this method model the human linguist? As Kon-

drak himself points out, the WordNet database allows one to account for

certain types of semantic changes — including generalization, specialization,

synechdoche — but not others, such as metonomy, melioration/pejoration,

and metaphor (Kondrak 2011). Nonetheless, this method is at least based on

types of actual semantic change as considered by the linguist, which makes

it preferable. On the other hand, using WordNet, developed based purely on

English meanings, only aggravates the problems of using Indo-European data,

as in Steiner et al.’s solution (WordNet 2012). However, this same kind of bias

exists for the historical linguist, who can only rely on the semantic similarity

in the glosses (i.e. in the linguist’s native language). In fact, using English

153



Gilman

only is more realistic than using a full set of Indo-European languages, as such

knowledge is not, presumably, usually within the grasp of the human linguist.

Thus, while this is a problem, it models a flaw that exists in the classic com-

parative method. Since the goal of the CMA is to model the comparative

method as closely as possible, this is a good thing in context of the CMA.

Thus, overall, the Kondrak WordNet model is a more CMA-appropriate way

to model semantic similarity, and this method shall be used in place of the

original Steiner et al. method within the CMA.

Using the form similarity comparison method developed in section 2.3 and

this semantic similarity method, the CMA will thus identify pairs of words with

DOCEs reflecting how similar they are in both form and meaning. Equipped

with these DOCEs, the algorithm can now proceed with multiple alignment.

2.5 Multiple Alignment

The next step is multiple alignment, where the full cognate sets are brought

together and aligned, and the correspondence sets are found. Here, again,

there are a variety of options, which differ mainly in computational ways and

model the linguist approximately equally well. The CMA (at least in this

first version) will simply use List’s model as the most easily available (see List

forthcoming for details). At the end of such a process, the CMA has a full

list of cognate sets, each one presented as in Table 4 below, with the columns

representing the correspondence sets.

Language1 b i z

Language2 p e [gap]

Language 3 p i S

Table 4 A sample alignment

Furthermore, at this step, the DOCE associated with each correspondence

set is calculated. When a linguist considers the reliability of a correspondence

set (regularity aside), he looks at the sounds that must be considered simi-

lar, the number of languages in the correspondence set (i.e. the number of

languages which supply an IPA character rather than NULL as their contri-

bution), and his confidence in his own alignment. All of these factors must

thus be included in the overall DOCE, and each would bear its own weight.

Notably, however, the similarity of the sounds is already integrated, in the

CMA’s case, into the DOCE of the alignment (i.e. the linguist’s confidence

154



Comparative Method Algorithm

in his alignment). Thus, there are only two categories. The exact weights

are not easily calculable, so they should be picked very approximately and

fine-tuned for the best performance after the algorithm is completed. Suppose

thus, that each consideration has a weigh, and that the weights add up to 1:

weightN is the weight associated with the number of languages in the set,

and weightC is the DOCE of the cognate set as calculated by the multiple

alignment algorithm. With these weights in mind, the overall DOCE might

be calculated using something like the formulation in equation (3), where the

weights are as defined below, langinv is the number of languages involved in

the correspondence set, langtot is the number of languages being compared in

this instance, and CognateDOCE is the DOCE of the cognate set overall.

(2) DOCEcorresp “ weightN ˆ
langinv

langtot
` weightC ˆ CognateDOCE

If this formula is used, each correspondence set, as well as each cognate

set, now is both found and has a DOCE that incorporates the previous DO-

CEs. Notably, the DOCEs associated with the correspondence sets will not,

in this first version of the CMA, be used in the next step (learning from corre-

spondences), but they will become very important in the discussion of actually

reconstructing proto-sounds in section 3. The next step, meanwhile, is to learn

from the correspondences.

2.6 Learning from the Correspondences

(See row 5 of Table 1)

The final step of the process is learning from the correspondences estab-

lished to create a new scoring scheme. Since regular correspondences are, as

Trask (1996) points out, more important than similarity of form and meaning,

they will now play the greatest role in the scoring schema. Meaning and form

similarity should not, however, disappear completely, as those categories are

still important (see below for formulaic discussion).

In learning from the actual correspondences (as opposed to calculating

their DOCEs as discussed in section 2.5), the main factor is the regularity of

the correspondences. There are a range of different formulas used to calculate

the probabilities of transition; the decision is mainly computational, and, while

there may be subtle differences in how an equation models the human linguist,

a discussion of such differences is beyond the scope of the current paper. For

this version of the CMA, Delmestri’s PAM-like matrix formulas, a substitution

matrix tool from bioinformatics, will be used, as Delmestri deems them to be

the most effective (at least in her algorithm) (Delmestri 2011). This formula

155



Gilman

thus yields the degree of similarity between two sounds, as predicted by the

regular correspondences found.

The only remaining step is then to integrate the new knowledge learned

from correspondences with the old information on sound similarity. Most pre-

vious algorithms seem to neglect to do this, but this step is nonetheless critical

to modeling the human historical linguist, who does not forget everything he

knows about likely correspondences and plausible pathways after considering

the correspondences. On the other hand, as Trask points out, the correspon-

dences do play significantly less weight, so that the weights of the two con-

siderations will be unbalanced (at a first approximation, one could guess 30%

for values from the old scoring schema and 70% for the new values). Thus,

the formulas for the final probabilities might be calculated as in equation 3

below, where the variables new the probability (ProbNew), the weight of the

old knowledge (WeightOld), the old probability (ProbOld), the weight of the

new information found out from the correspondence sets (weightCorresp),

and the probability derived from the correspondences (ProbCorresp)

(3) ProbNew “ weightOld ˆ ProbOld ` weightCorresp ˆ ProbCorresp

With these equations, the new scoring scheme is created, and it can be used

to restart the process of finding Cognates and Correspondences. This process,

then, of finding cognates and correspondences can be repeated until the new

scoring schema does not differ from the old. At this point, the correspondence

sets and their DOCEs can be considered as set in stone, and the next step —

reconstruction of proto-sounds — can begin.

2.7 Summary of §2

In this section, a model has been presented for finding the Cognates and Cor-

respondences from a set of word lists. This method, outlined below in figure 3

is a combination of established practices and innovative ideas. In the figure 3,

elements of this algorithm that arise from previously established models have

a shaded comment.

As can be seen in the figure, the overall multiple alignments and DOCEs are

calculated with a combination of string similarity and alignment algorithms,

which is a new structural idea that the CMA brings to the field. Furthermore,

the CMA uses a new scoring scheme for the alignment algorithm (as described

in briefly section 2.3.2 and in more detail Gilman 2012b) that relies on new di-

achronic databases thus being simultaneously more pre-theoretic than previous

scoring schemes and modeling the human linguist better, in dealing with both

156



Comparative Method Algorithm

Figure 3 Outline of the CMA Cognates and Correspondences Algorithm

pure probability of corresondence and the associated ’plausibility of pathways’

(i.e. using sound change databases). Finally, thougout the algorithm, the

CMA preserves DOCE estimates that will play the key role in this algorithm,

as it is the DOCEs calculated here will be used to calculated the final DOCEs

157



Gilman

associated with reconstructed proto-words, which, in turm, will be used to pro-

vide another outlook on the reality of reconstruction discussion. Thus, overall,

the CMA version of form comparison algorithm provides a pre-theoretic and

accurate-modeling-of-human-linguist algorithm that contains two previously

untried ideas in addition to the DOCEs that are the main contribution of this

algorithm.

3 Phonological Reconstruction

After the ‘cognates and reconstructions’ step, the comparative method goes

into its final phase: reconstructing protophonemes. The input for the sound

reconstruction step is the set of regular correspondences and the cognate sets

found by the cognates algorithm, along with their DOCE estimates. The

output should be proto-sounds, the sound system of the proto-language, and

proto-wordforms — all with DOCE estimates. Furthermore, to satisfy the

second goal of the CMA, this final algorithm componenet should output several

solution options, thus resolving Pulgram’s paradox of a uniform reconstructed

language. At the same time, as with the previous step, the goal is to remain

pre-theoretic and model the human linguist as closely as possible.

The only real basis for creating such an algorithm is currently Oakes al-

gorithm from 2000. Notably, there was one other algorithm that aimed to

reconstruct proto-sounds, by Bouchard-Cote et al. (2007; 2008; 2009), but

it does not model the comparative method. Since, in order to be useful in

evaluating the reality of reconstructions, the CMA algorithm must model the

comparative method as closely as possible, there is very little that the CMA

can gain from the Bourchard-Cote et al. proposal. Instead, the algorithm I

propose is roughly based on Oakes, but modifies it in several critical ways.

Notably, Oakes does not reconstruct the proto-sound system, nor, of course,

does he deal with multiple outputs.

Thus, this discussion, much as the discussion in the previous section, will

first introduce the human method for this step (section 3.1) and then take

apart the three sections of the algorithm — establishing the proto-phonemes

(section 3.2), reconstructing the proto-sound systems (section 3.3), and recon-

structing proto-words based on the proto-sound-systems (section 3.4)

3.1 The method of the human historical linguist

At the reconstruction step of the process, the human linguist goes through two

steps: he reconstructs proto-sounds (and proto-sound system) and then uses

that system to reconstruct the proto-words.

In the first step, the human linguist, considers many factors in looking at

158



Comparative Method Algorithm

candidate proto-sound: explanatory power (explain all the data), majority (if

one sound predominates in the correspondence set), economy (as few changes

as possible between the proto- and current sounds), naturality (sounds changes

must be such as occur in history), a preference for reconstructing the minimal

number of phonemes, a preference for creating a balanced system balance, a

preference for not reconstructing any phonemes foreign to the language family,

an awareness that some phonemes may have been lost through sound mergers,

and the possibility of parallel development (Crowley 1992; Lass 1993; Trask

1995; Fox 1995). To simulate the human, a reconstructing algorithm must,

ideally, attempt to consider all (or at least most) of these factors as well.

Once all the proto-sounds are established, the sound system, the list of

unique sounds reconstructed, can be assemebled.

Finally, the last stage is the reconstructing proto-words stage — a fairly

mechanical process for both the human linguist and the algorith. In fact,

it is simply a matter of plugging the found proto-sounds in for the sound

correspondence groups. This step, both for the human and for the computer,

is fairly simple.

The only other addition is that the CMA must deal with Pulgram’s para-

dox, which is not part of the standard human linguist’s work. For that pur-

pose, multiple proto-sounds (and thus proto-sound systems) will be generated,

from which the proto-words are later composed. Thus, the basic aim of the

reconstruction step would be accomplished.

In what follows, I will accordingly present the three steps of this algo-

rithm: determining the proto-sounds (section 3.2), creating the sound system

(section 3.3), and generating proto-words based on these systems proto-words

(section 3.4).

In all of these sections, I attempt to outline the CMA version of this al-

gorithm in as much detail as possible, pseudo-code included. This attempt is

provided here, because the CMA is only the second method since Oakes to

deal in reconstruction, and thus there is a heavier burden of proof in terms

of showing that such an algorithm, meeting all the heuristics required here, is

possible. The pseudo-code blocks in the sections that follow should illustrate

that the algorithm is entirely possible. The caveat, however, is that this par-

ticular method may not be the best possible method — it is merely a method

that meets the heuristics of remaining pre-theoretic and modeling the human

linguist reasonably well while also calculating DOCEs and providing multiple

outputs.

159



Gilman

3.2 Reconstructing Proto-Sounds

3.2.1 The Overall Outline

The basic idea of the CMA reconstruction algorithm is surprisingly simple,

closely modeling that of Oakes as shown in Algorithm 1 (Oakes 2000). For

every correspondence set, the CMA goes through every candidate proto-sound

(i.e. every IPA character), considers how likely it is to be the proto-sound, and

assigns it a DOCE reflecting how good of a proto-sound it would be. The IPA

character(s) with the best DOCE score(s) win and are considered proto-sound

options.

The plural here refers to the multiple outputs discussed in the introduction.

There are several potential ways of generating these multiple outputs: one

could preserve only the best set number of candidates (e.g. 2), only preserve

multiple proto-sound candidates when there is a tie in the DOCE (or something

very close to a tie where the DOCEs of the top two candidates are only some

small percentage apart), or preserve all candidates above a certain DOCE

threshold (e.g. 40%). The second method will be adopted: the algorithm

shown below (Algorithm 1) preserves only tied DOCEs. While this is not

necessarily the best method, it is the simplest and is a reasonable illustration

of the sorts of DOCEs the CMA may want to preserve.

This simplistic algorithm approximation declares three initially empty vari-

ables to represent the best proto-sound candidate (BestCandidate), the other

candidate with the same DOCE score (OtherBestCandidate), and the DOCE

of these two best candidates (BestCandidateDOCE) (lines 3-5 in Algorithm 1).

After finding the DOCE for each candidate (i.e. the CurrentCandidateDOCE

for the CurrentCandidate by using the ‘findDOCE’ function in the algorithm

at line 11 that will be defined in section 3.2.3), it then compares this DOCE

to the previous best DOCE (line 9). If the new DOCE is found to be better,

then it is declared the new BestCandidateDOCE, and the associated candi-

date is declared the BestCandidate (line 10-11). If the CurrentCandidate

has the same DOCE as the previous best candidate, it is assigned to the

OtherBestCandidate slot (12-14). Notably, this means that if there are more

than two candidates with identical DOCEs, the first and last ones will be the

ones picked. Since they are picked arbitrarily, however, this is an acceptable

way to proceed, as long as the goal is to pick only two candidates. Later ver-

sions of the CMA may modify this part. With the current strategy, however,

the algorithm knows what the best candidates for the proto-sound are and

what their common DOCE is at the end of the for-loop above.

The main difference between this model and the work of the human linguist

is that the human linguist may not feel the need to be quite that meticulous

160



Comparative Method Algorithm

Algorithm 1 The Very Basics of the CMA Sound Reconstruction Algorithm

for all sound correspondences do

{STEP 0: Initialize Variables}
3: BestCandidate “ NULL

BestCandidateDOCE “ 0

OtherBestCandidate “ NULL

6: CurrentCandidate “ NULL {Constantly changes inside loop}
CurrentCandidateDOCE “ 0 {Constantly changes inside loop}
for all IPA characters do

9: {STEP 1: calculate the DOCE score for each candidate proto-sound}

CurrentCandidate “ CurrentIPACharacter

CurrentCandidateDOCE “ calculateDOCEpCurrentCandidateq
12: {STEP 2: add the current candidate to the best candidate couple, if

it is better than or ties with the previous best candidate}
if CurrentCandidateDOCE ą BestCandidateDOCE then

BestCandidateDOCE “ CurrentCandidateDOCE

15: BestCandidate “ CurrentCandidate

else if CurrentCandidateDOCE “ BestCandidateDOCE then

OtherBestCandidate “ CurrentCandidate

18: return BestCandidate,OtherBestCandidate,BestCandidateDOCE

in his processing, as he usually has some guiding intuition as to what can-

didates are important. Since the CMA has no intuitions, however, this step

is necessary. Furthermore, this slight mismodeling should have no effect on

the algorithm’s ability to find the same answer as the linguist and is thus

not in violation of the heuristic. Thus, with this general algorithm in mind,

we can discuss what exactly the criteria for determining the DOCE of a can-

didate proto-sound are (section 3.2.2) before presenting a detailed outline of

the calculateDOCE function from Algorithm 1 that is the lynchpin of this

algorithm (section 3.2.3).

3.2.2 The Criteria

In calculating the DOCE of a given candidate proto-sound, the goal of the

CMA should be to exactly model the human linguist and include all seven

of the criteria mentioned in the human’s methodology. While this is, unfor-

tunately, outside the range of possibility for the CMA at the moment, the

161



Gilman

CMA models six of the eight characteristics (as opposed to Oakes’ four5).

Conveniently, the CMA (unlike Oakes) calculates the score for each criterion

separately (except naturality and economy, which are combined), which allows

the weights of the different criteria to be adjusted to best model the human

linguist. Accordingly, I discuss each criteria individually in this section before

discussing the algorithm for calculating the numbers involved and combin-

ing these criteria into a final DOCE estimate for each candidate proto-sound

(section 3.2.3).

Naturality ’Naturality,’ for the human linguist, is a matter of considering

how likely one sound is to change into another. There are, as with

sound similarity, a theoretical and an empirical approach to measuring

the probability of sound change. Oakes basis his analysis on one partic-

ular theory: changes are considered probable if they are listed in Crow-

ley’s textbook as natural (Oakes 2000). To remain pre-theoretic and

quantitative in analysis, the CMA instead models its scoring schema

of sound probability on the three diachronic databases used for the

sound similarity scoring scheme. Since these databases record either

the sound changes (with relevant contexts) found in the literature or

the probability of a sound correspondence (which is the result of a

sound change), they allow for the creation of a fairly precise scoring

scheme that gives the probability of any sound change (normalized

to be between 0 and 1) sans context as well as in several contexts

specifically mentioned in the literature (See Gilman 2012b for more

detailed discussion of why the empirical approach is preferrable, why

sound correspondences are relevant, and how exactly the probabilites

are calculated). This scoring scheme will thus be used to determine

the naturality of a sound change.

Majority ’Majority’ is the simplest of the human linguist’s considerations:

the more daughter-phonemes the candidate proto-phoneme is identical

to, the more likely it is to be correct (Trask 1996). The DOCE of this

category will be a simple percentage of agreement (e.g. 20% if 1 of the

5 daughter phonemes matches the candidate proto-phoneme). While

one could (as Oakes does) consider ‘majority’ to be part of ‘naturality,’

the human linguist, at least according to stanard textbooks, attaches

a special weight to daughter-sounds and candidate proto-sounds being

identical, and thus the CMA likewise gives this consideration a separate

weight (Trask 1996).

5 Oakes (2000) takes his list of criteria from Crowley. The list here, on the other hand, is a
compilation of the lists from Crowley, Trask, Fox, and Lass.

162



Comparative Method Algorithm

Economy This criterion is, in this model, part of ‘naturality.’ For the human

linguist, the ‘economy’ criterion is based on the assumption that cer-

tain changes take more than one step (e.g. for /b/ to become /h/, the

linguist might say that first /b/ became /p/ and then /p/ became /h/)

(Trask 1996). This would be, in a sense, because a change from /b/ to

/h/ would be considered implausible. The CMA, however, only recon-

structs a single proto-phoneme for each set of daughter-languages, at

least at this stage. Thus, instead of measuring economy directly, the

CMA measures it indirecly through naturality: a change such as /b/ to

/h/ would have a lower probability in the sound change scoring scheme

for ‘naturality’ described above, and thus /b/ as the proto-phoneme

would receive a lower DOCE, reflecting both the unnaturalness of the

change and its lack of economy. Ideally, it would be good to be able to

measure this criterion separately, as the human linguist does consider

it as different from ‘naturality.’ One solution would be to separately

determine the weights the human attaches to ‘naturality’ and ‘econ-

omy’ and then assign their sum to the CMA ’naturality,’ which, in the

CMA, reflects both of these criteria.

No foreign sounds This criterion implies that no sounds foreign to the lan-

guage family should be reconstructed (Lass 1993). The algorithm will,

at the beginning, create a list of sounds in the daughter languages. If a

sound outside of those is being reconstructed, it will receive a 0 DOCE

score for the ‘no foreign sounds’ category.

Lost information The human linguist is aware that some phonemes may

have been lost through sound mergers and that parallel development

may be mistaken for a common ancestroy (Trask 1996). In any com-

parative method model, these are inherent dangers. The CMA model,

however, can account for the issue, to some degree, by imposing a

DOCE cost across the board. While this will not affect the winning

reconstructed choice, it would affect the overall DOCE, thus bearing

on the final question of how real a reconstruction is.

The only criteria not included in this model are considerations of recon-

structing the minimum number of phonemes and those of system balance. The

issue with both criteria is that it would require the algorithm to either find all

possible proto-sound systems or run a very memory-heavy dynamic program-

ming algorithm leading to the most economical and balanced sound system.

While both are in principle possible, they are potentially beyond the strength

of modern computers. That is, thus, a remaining flaw in the CMA. There is an-

other other potential problem, mentioned in Oakes (2000) and unaccounted for

163



Gilman

both there and in this version of the CMA: multiple correspondences may gen-

erate the same proto-sound. Opinions seem to differ on the extent to which this

is allowable, as Trask (1996), for example, reconstructs the same proto-sound

for different correspondences whereas Crowley (1998) recommends avoiding

this if at all possible. For the sake of simplicity, the CMA currently allows

multiple correspondences to yield the same proto-sound. A further version of

the CMA may add an option for reconstructing proto-sounds such that each

correspondences has a unique proto-sound. Aside from accounting for these

two categories, however, the CMA sound reconstruction algorithm meets the

necessary requirements: it calculates the relevant DOCEs, allows for multiple

ouput by preserving more than one candidate proto-sound, takes into consid-

eration an additional criterion that the Oakes’ algorithm did not (number 5 on

the list), allows more criteria to have separate weights, and remedies the issue

with theoretical bias in naturality. The next question is how exactly such an

algorithm would work.

3.2.3 Combining the Criteria into an Algorithm

The goal of this section is to determine how exactly the criteria are combined

to find the DOCE of a proto-sound candidate, to define the calculateDOCE

function used in Algorithm 1. Such a function must calculate the individual

scores for each of the criteria listed in section 3.2.2 (accomplished in Steps 1-2

of the function as outlined algorithm 2 before combining them into the final

DOCE score in Step 3 in 2).

The way in which each criterion is calculated is slightly different. Ma-

jority and Naturality (which subsumes Economy) are the most complex cal-

culations. For each proto-sound candidate, the algorithm must go through

each daughter sound and calculate the Majority and Naturality scores for that

candidate-daughter pair, which is accomplished in Step 1. The Majority score

is simply 0 for non-identical sound pairs and 1 for identical ones, as shown in

lines lines 8-9 of Algorithm 2. The Naturality score is slightly more complex:

it is the probability recorded for that proto-sound — daughter-sound (and

possibly context) pairing in the scoring schema, which I label in the algorithm

as ScoringSchemepcandidate, daughtersoundq in line 10 of Algorithm 2. As

the algorithm calculates each score, it adds that score to the previous score

(which is the sum of all the previous scores for that criterion for the different

daughter-phonemes) obtaining an overall sum for all the daughter sound (see

lines 9-10 of figure 2). (The values for both Majority and Naturality are ini-

tially 0, as they are defined as such when the variables are initialized in Step

0). Then, in Step 2, the algorithm divides that sum by the total number of

daughter-sound, thus finding the overall scores for Naturality and Majority.

164



Comparative Method Algorithm

The calculations for the ’No foreign sounds’ and the ’Lost information’

criteria are much simpler and can both be done in Step 2, outside the daughter-

sound loop (lines 12-15 in figure 2. The ’No foreign sounds’ criteria is simply

1 if the candidate proto-sound is a sound in any of the daughter languages

(PhonemesNative stores all such sounds) and 0 otherwise. Lastly, the number

associated with the ’Lost information’ criterion reflects only the DOCE the

user associated with their data and thus is pre-set at the beginning of this

algorithm, needing no further calculation. Thus, after Steps 1 and 2, the

scores associated with each criterion are known.

Finally, in Step 3, the combined DOCE score of the candidate proto-sound

is calculated based on a simple weighting schema shown in line 17 of Algo-

rithm 2. Each criterion has a weight, and these weights determine the role

of each score. Notably, there is a component in that equation that is not

one of the criteria: the DOCE of the correspondence itself is as calculated in

section 2. Thus, using the DOCE values from section 2 and the criteria for

proto-sound evaluation — all of which are scores are between 0 and 1 — the

CMA calculates the overall DOCE, also thus a number in that range.

When this DOCE is found, we can use it to compare proto-sounds as

discussed in Algorithm 1. In technical terms, the DOCE of a given candidate,

the output of Algorithm 2 is the output of the calculateDOCE function, used

in Algorithm 1, the only part of Algorithm 1 that was not previously fully

described. With Algorithm 1 thus fully described, the next step is to form a

set of alternative sound systems based on the ties (section 3.3).

165



Gilman

Algorithm 2 The calculateDOCE function that determines the DOCE of a
given proto-sound candidate

{STEP 0: initializing the variables}
PhonemesNative = All the phonemes that are in at least one of the
daughter languages

3: numdaught = The number of daughter sounds involved in the comparison

Majority “ 0

Naturality “ 0

6: Foreign “ 0

{STEP 1: Go through each daughter sound in the correspondence set to
find the ’majority’ and ’naturality’ scores}
for all daughter sounds in the correspondence set do

if daughter sound and candidate are the same then

9: Majority “ Majority ` 1 {Otherwise, we would add 0, i.e. do noth-
ing}

Naturality “ Naturality`ScoringSchemepcandidate, daughtersoundq
{STEP 2: Deal with ’foreign’ criteria and normalize in-loop values}

12: if candidate in PhonemesNative then

Foreign “ 1 {Otherwise, it remains 0}
Majority “ Majority ˜ numdaught

15: Naturality “ Naturality ˜ numdaught

{STEP3: Calculate the Overall DOCE of the proto-sound candidate}
candidateDOCE “ Majority ˆ MajorityWeight `
Foreign ˆ ForeignWeight ` Naturality ˆ NaturalityWeight `
LostInfo ˆ lostInfoWeight ` CorrespondenceDOCE ˆ
CorrespondenceDOCEWeight

18: return candidateDOCE

166



Comparative Method Algorithm

3.3 Sound Systems

At this stage, the CMA has a list of correspondences, each paired with one or

two best proto-sounds. To eventually get multiple ouput options in the proto-

word lists, the CMA must now generate multiple sound systems. There are

two basic approaches for finding the sound systems. One could make a sep-

arate sound system for each possible combination of proto-sounds, such that

if there were two correspondence sets and each had two best proto-sounds,

one would have four sound systems. The problem with this method is that

it couldyield a very large number of sound systems: if there was a coinci-

dence for every sound correspondence (highly unlikely), there could be as

many as 2
pNumberOfSoundCorrespondencesq sound systems. The alter-

native method would be to simply calculate two sound systems: one based on

the original best candidate and the other based on the tying candidate (with

original candidates used wherever no candidate tied). For the sake of simplic-

ity, the CMA here uses the second method to generate two sound systems,

though the modifications to use a different method or provide the reader with

options could easily be made.

The algorithm in Algorithm 3 implements the two-system method. After

initializing two empty sound systems, it goes through each sound correspon-

dence and fills in the sound systems, after checking that that sound is not in

the sound system yet (e.g. lines 6-7 of Algorithm 3). With each added sound,

the number of the sounds in that sound system (i.e. soundnumOriginal and

sundnumTying) grow by 1 AS IN LINE (these numbers will be needed later to

calculate the overal DOCE of the sound system) When filling in the sound sys-

tem based on the tying (OtherBestCandidate) proto-sound candidates (lines

8-13 in Algorithm 3), the algorithm first checks that such a tying candidate ex-

ists (i.e. is not NULL) — it is used if it exists, and the original best candidate

is used otherwise.

One notable thing is that this sound system stores three different things:

it stores the sound correspondence the proto-sound is based on complete with

its original DOCE as calculated in section 2 (correspondence), the proto-

sound itself (BestProtoSound or OtherBestCandidate), and the DOCE of

that proto-sound (BestProtoSoundDOCE). All of that information is neces-

sary for finding the proto-words and calculating their DOCEs (see section 3.4).

Once these systems are complete, the algorithm calculates their overall

DOCEs: the average of all the DOCEs of the proto-sounds (as shown in lines

21-26 of Algorithm 3). Thus, the DOCE of the sound system includes the DO-

CEs of the proto-sounds themselves (BestProtoSoundDOCE), which, in turn,

include the DOCEs associated with the correspondences (CorrespondenceDOCE).

The DOCEs of the sound system thus still reflect the entire chain of the process

167



Gilman

at the point when the sound systems are found. The final step is then finding

the different versions of the proto-words and their correspondoning DOCEs

(section 3.4).

168



Comparative Method Algorithm

Algorithm 3 Algorithm for Generating Sound Systems

{STEP 0: Initialize two empty sound systems}
SoundSystemOriginal “ NULL

3: SoundSystemTying “ NULL

soundnumOriginal “ 0

soundnumTying “ 0

{STEP 1: Put the proto-sounds into two sound systems}
6: for all correspondences do

if BestProtoSound not in SoundSystemOriginal then

Add the correspondence, its BestProtoSound, and its
BestProtoSoundDOCE to SoundSystemOriginal

9: soundnumOriginal “ soundnumOriginal ` 1

if OtherBestCandidate ‰ NULL then

{i.e. if there is a tying candidate}
12: if OtherBestCandidate not in SoundSystemTying then

Add the correspondence, its OtherBestCandidate, and its
BestProtoSoundDOCE to SoundSystemTying

soundnumTying “ soundnumTying ` 1

15: else

if BestProtoSound not in SoundSystemTying then

Add this correspondence, its BestProtoSound, and its
BestProtoSoundDOCE to SoundSystemTying

18: soundnumTying “ soundnumTying ` 1

{Step 2: Calculate DOCEs for the sound systems and return sound sys-
tem}
SystemOriginalDOCE “ 0

SystemTyingDOCE “ 0

21: for all proto-sounds in SoundSystemOriginal do

SystemOriginalDOCE “ SystemOriginalDOCE `
BestProtoSoundDOCE

SystemOriginalDOCE “ SystemOriginalDOCE˜soundnumOriginal

24: for all proto-sounds in SoundSystemTying do

SystemOriginalDOCE “ SystemOriginalDOCE `
ProtoSoundDOCE

SystemOriginalDOCE “ SystemOriginalDOCE ˜ soundnumTying

27: return SystemOriginal, SystemOriginalDOCE,SystemTying, SystemTyingDOCE

169



Gilman

3.4 Proto-Words

After the reconstruction of sounds is complete, there remains a final step: the

reconstruction of the proto-words. This step, for both the human linguist and

the CMA, is quite simple. The only difference between the work of the human

linguist and that of the CMA, is that the CMA goes through this process

several times: once for each sound system available, regardless of how many

have been created (in this case, two). Thus, the multiple outputs are generated

in a very simple way: each proto-word is reconstructed with as many options

as there are sound systems, each time using the algorithm in Algorithm 4.

The algorithm itself is fairly simple. Each ’word’ in this case is the multiple-

aligned cognate set found in section 3 (as for example in Table 5). Thus, for

each column in Table 5, the algorithm in Algorithm 4 would reconstruct either

a proto-sound or a gap (which is one of the IPA characters available as a

proto-sound), thus, in the end reconstructing the entire word.

Language1 b i z

Language2 p e [gap]

Language 3 p i S

Table 5 A sample alighnment

In the first step, the algorithm looks at each column in order, determining

the right proto-sound and DOCE for each column by the simple expedient of

checking what proto-sound is associated with that sound correspondence in

sound system (lines 9-10 of Algorithm 4). As each proto-sound is found, it

is added to the WordString that is the proto-word and it’s DOCE is added

to the WordStringDOCE, which will (once normalized at line 13) become

the DOCE of the proto-word (the WordSTring). At Step 2, every such

word (WordString) and associated DOCE (WordStringDOCE) is added

to the ultimate proto-word list (WordList) and its to-be-normalized DOCE

(WordListDOCE). Finally, Step 3 finds the average and thus overall DOCE

of each word list (WordListDOCE) and returns the word list (complete with

proto-words and DOCEs for individual words) as well as the overall DOCE

for the word list. Notably, again the DOCE for the word lists include the

DOCE for the words, which include the DOCE for the proto-sounds, which

include the DOCE for the sound correspondences. Thus, the final DOCEs do

in fact include all the relevant DOCE information from throughout sections 2

and 3. Since the algorithm is run as many times as there are sound systems

170



Comparative Method Algorithm

(in this case 2), two or more alternative word lists will be generated, thus also

providing the solution to Pulgram’s Dilemma.

Algorithm 4 Algorithm for Reconstructing Proto-Words Based on a Given
Sound System

{STEP 0: Initialize the previously found sound system and the empty
word list}
SoundSystem “ CurrentSoundSystem

3: WordList “ NULL

for all words do

{STEP 1: Figure out each word and its associated DOCE}
6: soundnum “ 0

WordString “ NULL

WordStringDOCE “ NULL

9: wordnum “ wordnum ` 1

for all correspondence sets in the word do

AssociatedProtoSound = the proto-sound associated with that cor-
respondence set in the sound system

12: AssociatedProtoSoundDOCE = the BestProtoSoundDOCE of
that proto-sound
WordString “ WordString ` AssociatedProtoSound

WordStringDOCE “ WordStringDOCE `
AssociatedProtoSoundDOCE

15: soundnum “ soundnum ` 1

WordStringDOCE “ WordStringDOCE˜soundnum {STEP 2: Add
each word and it’s DOCE to the wordlist}
WordList = WordList + WordString

18: WordListDOCE = WordListDOCE +WordStringDOCE
{STEP 3: Average the DOCE of the word list to get the word list DOCE}

WordListDOCE “ WordListDOCE ˜ wordnum

21: return WordList,WordListDOCE

171



Gilman

3.5 Summary of §3

In this section, the CMA algorithm for the final step of the comparative

method was developed: Algorithm 5 summarizes the methods the CMA uses to

reconstructproto-sounds (Step 1 of Algorithm 5 below), proto-sound-systems

(Step 2 of Algorithm 5), and proto-words (Step 3 of Algorithm 5). While the

simplest decision possible was made in all circumstances, the detailed illus-

tration of the algorithm in this section showed that it is possible to create a

reconstruction algorithm that meets the two main goals of the CMA: it effec-

tively calculate useful DOCEs (i.e. ones that include all previous DOCEs) and

provides multiple reconstructions for the proto-sound-system and proto-words.

Furthermore, the algorithm models the human linguist more carefully than the

single previous attempt (by Oakes (2000)) in that it includes more of the cri-

teria the human linguist uses in picking a proto-sound and assigns several of

the criteria separate weights, so that their different importance to the linguist

can be modeled (discussed in section 3.2.2). It also uses a database-based

scoring schema for measuring the ‘naturality’ of a sound change, thus allowing

the CMA algorithm to also be reasonably pre-theoretic. Thus, the current

reconstruction CMA algorithm, as summarily outlined below in Algorithm 5,

accomplishes all the goals set in the introduction and meets both of the main

heuristics.

4 Conclusion

Thus, using previous methods and recently developed databases, we are able

to create a Comparative Method Algorithm that models the full extent of the

comparative method, produces DOCEs for every step of the way, and yields

multiple outputs for reconstruction helping resolve Pulgram’s dilemma. Cur-

rently, there are still a plethora of ways this CMA could be improved. To take

one example, phylogenetic methods could be incorporated into the CMA to

serve at least two different purposes. First, they could help deal with borrow-

ings, as mentioned in the introduction. More importantly, creating a family

tree of the set of languages being compared would allow the reconstruction

stage to become more precise. For the criteria of majority, instead of con-

sidering each proto-sound in the correspondence set as having equal weight,

the proto-sounds could be grouped according to the sub-groupings established

by the phylogenetic method and thus be weighted more accurately. In ad-

dition, many of the computational steps discussed only briefly here should

be considered farther and potentially modified to best fit the CMA. Finally,

there are myriad improvements that could be made to the very basic algorithm

proposed in § 3 for the Reconstruction Step from finding sound systems in a

172



Comparative Method Algorithm

Algorithm 5 Summary of the Reconstruction Step of the CMA

This algorithm starts out with aligned words and sound correspondences
with their DOCEs
{STEP 1: Find the Best Proto-Sounds}

3: for all sound corerspondences do

for all IPA characters do

Calculate the DOCE score of each IPA character
6: Pick the two+ best ones

{STEP 2: Create two+ Sound Systems}
add the proto-sounds together with their DOCE scores to the relevant
sound systems
Calculate the overall DOCE of the sound system

9: return the sound system to the user
{STEP 3: Find the Proto-Words with several alternatives for different
sound systems}
for all Sound Systems created at Step 2 do

for all Cognates with Multiple Allignment found in section ?? do

12: for all correspondence columns in those cognates do

Pick the appropriate proto-sound and add it, with it’s DOCE, to
the proto-word

Calculate the overall DOCE of the Proto Word
15: Add the Proto Word to the List of Proto Words

Calculate the Overall DOCE of the Lists of Proto Words
return to the user the List of Proto-Words with the overall and word-
individual DOCEs

different way to integrate system balance and minimum-number-of-phonemes

considerations into the discussion of reconstructions.

In addition to such improvements, the outputs of the CMA (DOCEs and

multiple-option reconstructed forms) will be interesting to study in and of

themselves. It would be interesting to determine if and to what extent the

multiple outputs exhibit similar patterns to a regular dialectal spread. The

DOCEs, meanwhile, would give some estimation of how effective the Compar-

ative Method is in general. A further step may be to modify the algorithm

slightly to allow for testing of different theories within the framework. Thus,

instead of using the combinations of databases for the initial substitution ma-

trices for sound similarity and likelihood of sound change, one could base the

matrices on specific databases or even different phonological theories and run

the algorithm with the same data but different theories. Then, the extent to

173



Gilman

which each version produces accurate reconstructions and the average values

of the resulting DOCEs could be used as an indication of how good each theory

and/or database is, or at least how appropriate it is the to task of reconstruc-

tion. Thus, this first approximation at the structure of a CMA opens up a

plethora of new possibilities.

References

Blevins, Juliette. 2008. Naturalness and iconicity in language. In Klaas

Willems & Ludovic De Cuypere (eds.), Natural and unnatural sound pat-

terns: A pocket field guide, 121–148. Amsterdam: John Benjamins.

Bouchard-Coté, A., P. Liang, T. L. Griffiths & D. Klein. 2007. A probabilis-

tic approach to diachronic phonology. In Proceedings of the 2007 joint

conference on empirical methods in natural language processing and com-

putational natural language learning, 887–896.

Bouchard-Côté, Alexandre, Thomas Griffiths & Dan Klein. 2008. A proba-

bilistic approach to language. In Proceedings of nips, .

Bouchard-Côté, Alexandre, Thomas L. Griffiths & Dan Klein. 2009. Improved

reconstruction of protolanguage word forms. In Proceedings of human lan-

guage technologies: The 2009 annual conference of the north american

chapter of the association for computational linguistics, .

Brown, Cecil H., Eric W. Holman & Søren Wichmann. 2011. Sound corre-

spondences in the world’s languages.

Campbell, Lyle. 1998. Historical linguistics. Edinburgh University Press.

Crowley, Terry. 1992. An introduction to historical linguistics. Oxford Univer-

sity Press.

Delmestri, Antonella. 2011. Data driven models for language evolution : Uni-

versity of Trento dissertation.

Engstrand, Olle, Petur Helgasson & Mikael Parkvall. 2008. The beginnings of

a database for historical sound change. In Papers from the 21st swedish

phonetics conference, 101–104.

Fox, Anthony. 1995. Linguistic reconstruction: An introduction to theory and

method. Oxford University Press.

Gilman, Sophia. 2012. Operationalizing the intuitive aspects of the compara-

tive method. Ms. Yale University. https://docs.google.com/document/d/

1XMmRcKe2ry6DLAJQrgVkUqkbHqKfdbm_IDSdQkP4-g0/edit.

Hamed, Ben Mahe & Sabastien Flavier. 2009. Unidia: A database for deriving

diachronic universals. In Monique Dufresne, Fernande Dupuis & Etleva

Vocaj (eds.), Historical linguistics 2007: Selected papers from the 18th in-

ternational conference on historical linguistics Current Issues in Linguistic

Theory, 259–268. Amsterdam: John Benjamins.

174

https://docs.google.com/document/d/1XMmRcKe2ry6DLAJQrgVkUqkbHqKfdbm_IDSdQkP4-g0/edit
https://docs.google.com/document/d/1XMmRcKe2ry6DLAJQrgVkUqkbHqKfdbm_IDSdQkP4-g0/edit


Comparative Method Algorithm

Hamed, Ben Mahe & Sabastien Flavier. 2011. The diadm project: A web-based

platform for diachronic data and models. http://www.diadm.ish-lyon.cnrs.

fr/.

Hauer, Bradley & Grzegorz Kondrak. 2011. Clustering semantically equivalent

words into cognate sets in multilingual lists. In The 5th international joint

conference on natural language processing, .

Kessler, Brett. 2005. Phonetic comparison algorithms. Transactions of the

Philological Society 103(2). 243–260.

Lass, Roger. 1993. How real(ist) are reconstructions. In C. Jones (ed.), His-

torical linguistics: Problems and perspectives, 156–189. Longman.

List, Johann-Mattis. 2012a. Lexstat: Automatic detection of cognates in mul-

tilingual wordlists. In Proceedings of eacl, joint workshop of lingvis and

unclh, 117–125.

List, Mattis. 2012b. Sca: Phonetic alignment based on sound classes. Forth-

coming.

Oakes, Michael P. 2000. Computer estimation of vocabulary in a protolan-

guage from word lists in four daughter languages. Journal of Quantitative

Linguistics 7(3).

Pulgram, E. 1959. Proto-indo-european reality and reconstruction. Language

35(3). 421–6.

Steiner, Lydia, Peter F. Stadler & Michael Cysouw. 2011. A pipeline for

computational historical linguistics. Language Dynamics and Change 1(1).

89–127.

Trask, R.L. 1996. Historical linguistics. Oxford University Press 2nd edn.

Sophia Gilman

University of Cambridge

Department of Theoretical

& Applied Linguistics

Faculty of Modern and Medieval Languages

Sidgwick Avenue

Cambridge, CB3 9DA

sophia.gilman@gmail.com

Yale University

Department of Linguistics

370 Temple St

PO Box 208366

New Haven, CT 06520-8366

175

http://www.diadm.ish-lyon.cnrs.fr/
http://www.diadm.ish-lyon.cnrs.fr/
mailto:sophia.gilman@gmail.com

