Domains and Parameters

Ian Roberts

Downing College, University of Cambridge
igr20@cam.ac.uk

Outline
Parameters as add-ons
Observations on cyclicity
Parameters and cycles
Rethinking word-order parameters
Skewed typological distributions

1. Parameters as add-ons

- An undoubtedly undesirable property of many approaches to parameters is that they add something to the theory simply in order to describe cross-linguistic variation:

1.1 In GB theory

(1) The bounding nodes for subjacency are NP and \{S, S’\}. (Rizzi 1982)

(2) a. \textit{pro} (Chomsky 1982);
 b. The licensing heads for \textit{pro} are \{I, V, P, …\} (Rizzi 1986).

(3) \(X \{\text{precedes/follows}\} \text{its complement in } X’\) (Stowell 1981, etc.).

(4) Wh-movement is overt/covert (Huang 1982).

1.2 In Minimalism

(6) \(F\) is strong/weak.

(7) EPP/*.^\ ...

(8) Operation \(\Omega\) applies here and/or there (timing parameters, Müller 2005).

(9) Externalisation (PF as an add-on to the thought system: Berwick & Chomsky 2011, 2016).

(10) The Borer-Chomsky Conjecture (BCC):
 Parameters reduce to formal features of (a subset of) functional heads.
 (Limits the add-on domain).

“[W]e can ask the most difficult question of all, but one which the minimalist programme requires us to ask: why do we have parameters at all?” (Roberts & Holmberg 2010: 53).

- Clearly, none of (1-10) answers this question, and in fact all the approaches take us away from minimalist ideals by complicating the theory in a manner directly driven by empirical observation.
1.3 Emergent Parameters (ReCoS and beyond)

“An alternative is that parameters are just those grammatical options which are not specified by UG” (Roberts & Holmberg 2010: 55).

(11) The BCC as the underspecification domain: where UG doesn’t mind.

(12) a. BCC_{bad}: functional head H has FFs \{F, G, \ldots\};

b. BCC_{good}: UG makes available a set F of FFs, which are (all?) optionally assigned/scattered across functional heads.

(13) Parameters and the three factors of language design:

a. F1: UG as in (12b);

b. F2: the learner’s interaction with PLD (see Crisma, Guardiano & Longobardi 2019);

c. F3: Feature Economy: avoid FFs.

Input Generalisation: maximise distribution of unavoidable FFs.
(Biberauer 2017 unites these as Maximise Minimal Means, MMM).

ReCoS idea: parametric variation (in the form of parameter hierarchies) is an emergent property of the interaction of F1, F2, F3 as specified in (13).

- Reduction of UG (as in (12b));
- some (much-needed) precision on F3;
- lots of results (see https://recos-dtal.mml.cam.ac.uk/, Roberts 2019, etc etc).

More radical ReCoS (Biberauer 2017): the FFs are not UG-given, as in (12b), but themselves emergent properties determined by (13).

(14) BCC_{better}: UG defines a possible FF (maybe as the pair \{iF,uF\}), which are optionally assigned/scattered across functional heads.

BUT: if there is one obvious property of natural language (in addition to Berwick & Chomsky’s Basic Property, essentially Merge), it is variation.

What if variation is (virtually) conceptually necessary? Then even (14) doesn’t capture this (as we could easily imagine a UG without it, or one which always defines a uniform set of FFs, uniformly scattered).

Perhaps we need to build variation in to the operations of the system itself. We probably can’t do this with Merge (? see Hale 1983), so:

Proposal: parameters define and are defined by cyclic applications of operations in local domains.

If cyclic application of operations (Merge, Agree) in local domains is (virtually) conceptually necessary, then so are parameters.

2. Observations on cyclicity

(15) Dependency generalisation

In a given local domain, if featural property P holds of H_1 where H_1 is asymmetrically c-commanded by H_2, then featural property P of H_2 is known.
(Roberts 2019:526)
(16) If a language has object agreement, then it has subject agreement.
(Moravcsik 1978:364, Corbett 2006:59)

 a. If there are two distinct NPs in the same spell out domain such that NP1 c-
 commands NP2, then value the case feature of NP2 as accusative unless NP1
 has already been marked for case.
 b. If there are two distinct NPs in the same spell out domain such that NP1 c-
 commands NP2, then value the case feature of NP1 as ergative unless NP2 has
 already been marked for case.

• If heads (T and v, presumably) license case, then this is clearly a further instance of (15).

(18) The Final Over Final Constraint (FOFC) (informal statement; Sheehan, Biberauer,
Holmberg & Roberts 2017):
 A head-final phrase βP cannot dominate a head-initial phrase αP where α and β are
 heads in the same Extended Projection.

(19) a. Dependent agreement (if the lower head agrees, the upper one does);
 b. Dependent case (if the lower head licenses case K, the upper one licenses
 K');
 c. Dependent linearization (if the lower head is initial, so is the upper one).

(20) Strict Cycle Condition (Chomsky 1973):
 No rule R can apply to a domain dominated by a node A in such a way as to solely
 affect B, a proper subdomain of A.

(21) ... [A ... [B ...] ...] ...

• If you apply agreement in B then you must in A (A is the agreement domain);
• If you license case K in B then you must license K' in A;
• If you don’t roll up in B, then you can’t in A (FOFC).

➔ Cyclic domains are more varied than we are used to thinking in the Phase Age: they include
 phases (for A’-movement etc), but also probably TP (= A for agreement and case-licensing
 in (21); maybe vP for erg-abs licensing) and the roll-up domain (any XP? See (28) below).
➔ NB how intervention locality can reduce to (20, 21): if there’s a target in B for a B-level
 operation and one in A, then the B-target must be targeted (first). The B-target intervenes
 between the lower term of the operation and the A-target.
➔ E.g. the Head Movement Constraint (a classic case of intervention locality) can be seen as
 the head-movement pendant of FOFC.
3. Parameters and cycles

(22) Types of parameters (Biberauer & Roberts 2012, 2015; Roberts 2019:75-76):

For a given value \(v_i \) of a parametrically variant feature \(F \):

a. Macroparameters: all heads of the relevant type, e.g. all probes, all phase heads, etc, share \(v_i \);

b. Mesoparameters: all heads of a given natural class, e.g. [+V] or a core functional category, share \(v_i \);

c. Microparameters: a small, lexically definable subclass of functional heads (e.g. modal auxiliaries, subject clitics) share \(v_i \);

d. Nanoparameters: one or more individual lexical items is/are specified for \(v_i \).

- Macroparameters define gross typological properties (polysynthesis, radical prodrop, harmonic word order, etc), are everywhere in the PLD, are (therefore) strongly conserved over time and (therefore) hold at genus (Dryer 1992) or higher taxonomic level;
- Mesoparameters correspond roughly to traditional GB parameters (consistent null subjects, verb-movement, etc), are well expressed in the PLD, are (therefore) fairly stable over time and (therefore) define genera up to (contact-induced) outliers, e.g. English in Germanic;
- Microparameters define often rather local axes of variation (clitics, determiners, auxiliaries, etc.) often within families, are reliant on subtle aspects of PLD, are (therefore) diachronically unstable and (therefore) define intra-family variation (e.g. Romance clitics, West Germanic verb clusters, etc);
- Nanoparameters are “irregular” lexically specific properties, usually diachronic residues which are analogised out of the system if not highly frequent/accessible in PLD (e.g. some aspects of English auxiliaries).

This taxonomy has proven descriptively fecund (Biberauer & Roberts 2012, 2015, 2017, van der Wal, to appear, Roberts 2019, Ledgeway, to appear, etc etc).

But:

- Although the taxonomy isn’t (despite first appearances) subject to the “add-on” critique (it’s the notion of emergent parameter plus the notion of set; Richie Kayne, p.c.), it does seem to be somewhat descriptively driven;
- It doesn’t look very conceptually necessary;
- “what is lacking in the hierarchies as they are stated ... is any clear formal aspect of the statement of a given option that allows us to immediately tell whether it is a macro-, meso-, or microparameter” (Roberts 2019: 616).

(23) A revision in terms of cycles:

a. Macroparameters: apply to all phasal domains;

b. Mesoparameters: apply across phasal domains;

c. Microparameters: apply within phasal domains;

d. Nanoparameters: apply across the minimal phasal domain, individual LIs (Marantz 1997).

- Meets the desideratum of 1.3: “parameters define and are defined by cyclic applications of operations in local domains.”
• Involves basic quantification over cyclic domains (ALL, SOME) with SOME restricted by the privileged cyclic domain, the phase \(\rightarrow \) close to conceptual necessity.
• Cycles define features/features define cycles; features define parameters/parameters define features; parameters define cycles/cycles define parameters: the three notions are interdefinable: the archi-thing that these notions define is the main other thing in the theory aside from Merge (see also Song 2019).

Two examples:

(24) A macroparameter: is [Person] present? N: radical prodrop (RNSL, e.g. Japanese); Y: non-RNSL (first option: agreement-licensed null arguments everywhere (Basque); second option: agreement-licensed null subjects (CNSL, e.g. Italian)).

- Obviously the negative answer affects all domains, and has numerous empirical consequences (argument ellipsis, lack of determiners, lack of agreement inflection, separation of Agree and Case-licensing; see in particular Saito 2016);
- The positive answer: agreement-licensed null arguments everywhere, e.g. Basque.
- First restriction: Person is present on T, D; null subjects (which, if they involve D-to-T incorporation – Barbosa 2019 – are clearly cross-phasal); presence of “rich” inflection; possibly verb-movement (see below); “rich” determiner system, etc.
- the CNSL property is mesoparametric, as it affects many but not all domains, and is cross-phasal: on the other hand full pronominal-argument systems like Basque contrast minimally with Japanese in having Person in all possible domains.

(25) A mesoparameter: does V raise into the TMA field (possibly in virtue of having uTMA features: Roberts 2019, Chapter 5)? Y: (most) Romance; N: English, Chinese, Haitian Creole, Niuean ...

- This is basically the “Pollock parameter” (see (5)); it is cross-phasal in that it determines whether V can get out of the lower phase. Obvious consequences for word-order (including being a precondition for VSO/VOS alternations of the kind described Massam 2001), negation, answers to yes/no questions (Holmberg 2016), V-licensed VP-ellipsis, etc. Possible link to “rich inflection” on V (vs auxiliary/particle-based TMA systems); Tvica (2017).

(26) Microparameters of V-movement in Romance (Schifano 2018):

- French/Romanian V > probably > (N)Italian V > already > EPort V > always > Sp V
- V targets different heads in the TMA field, determined by distribution of u/iAsp/T/M features on heads in that field and on V, correlating with TMA inflection on V (see Schifano 2018 for details, and Roberts 2019: 348-359 for a partial reinterpretation);
- This variation applies in the zone flanked by C and v, and hence is clearly intra-phasal;
- in non-English, non-Icelandic Germanic: probably (25) is negative (Holmberg & Platzack 1995, Biberauer 2003, Zwart 1997), the parameter(s) regulating V-movement into the left-periphery must be meso, but are distinct from (25).

Other consequences:

- erg-abs vs nom-acc alignment may be on the border of meso and micro: if the ERG parameter is “does v have ACC?” (Sheehan 2017) then, if positive, the case-licensing domain is cross-phasal (v and T); if negative, it is intra-phasal within vP (modulo “high ABS”).
- Huang’s wh-movement parameter is at least meso; micro wh-related parameters can’t involve successive-cyclicity, which is cross-phasal by definition but can involve
(a) landing sites in the left periphery (Bošković 2002); (b) the DP-internal nature of wh-elements (Cheng 1991, Huang 2015).

- Subject clitics are always micro; object clitics may be meso (since they move at least to the vP-edge): this looks right given the differences in cross-Romance distribution of these.
- Clausal negation is arguably always in TP, and therefore the variation is micro/nano (a lot of it is a side-effect of verb-movement). See Roberts (2019: 604) on boring parameters.

4. Rethinking word-order parameters

Roll-up parameters in each main clausal domain (vP, TP, CP):

(27)a. **vP-internal rollup:**

 \[Y/+: \quad [vP [vP O V] v (VP)] \quad \rightarrow \quad \text{CTOV (NB rollup at both VP and vP)} \]

\[N/-: \quad [vP \ldots v [vP V O]] \quad \rightarrow \quad \text{CTVO} \]

b. **TP-internal rollup:**

 \[Y/+: \quad [TP [vP [vP O V] v (VP)] T (vP)] \quad \rightarrow \quad \text{COVT} \]

\[N/-: \quad [TP \ldots T [vP \ldots v [vP V O]]] \]

c. **CP-internal rollup:**

 \[Y/+: \quad [CP TP [vP [vP O V] v (VP)] T (vP)] C (TP)] \quad \rightarrow \quad \text{OVTC} \]

\[N/-: \quad [CP C TP \ldots T [vP \ldots v [vP V O]]] \]

Remember that FOFC (a case of the Strict Cycle in (20)) guarantees that positive (27c) implies positive (27b) implies positive (27a).

Definition of “across” phasal domains in (23b): movement which affects the computation of the PIC, i.e:

- Movement to a phase edge (standardly);
- Movement of an entire phase (since this affects the timing of PIC-computation)
- \[\rightarrow \] all rollup is mesoparametric (this looks right from a typological/diachronic perspective).

(28) Word-order macroparameters? In:

a. \[\alpha \, H_1 \, H_2 \] -- we can neither linearise (“bottom-pair” problem) nor label \(\alpha \), unless we assume one H, say H2, has no categorial feature, i.e. it’s a Root, and H1 is a categoriser. Now we can label \(\alpha \) as H1, but we still can’t linearise. So one of them must move. Move H2:

b. \[\beta \, H_2 \, [\iota_1 \, H_1 \, (H_2)] \] – here \(\alpha \) is successfully labelled H1 and H2 can be linearised as preceding H1 (because H2 asymmetrically c-commands H1) and \(\beta \) must be labelled as H1 as H2 has no category. So H1 is the head of \(\beta \) and H2 is its complement \[\rightarrow \] rollup of complement around head.

c. Move H1 from (a):
 \[\iota_1 \, H_1 \, [\iota_1 \, (H_1) \, H_2] \] – here H1 will label \(\beta \) again but this time the moved H1 asymmetrically c-commands H2 and so is linearised as preceding it. This counts as head-movement.

- (28b) and (28c) are cases of rollup and head-movement as repairs of (28a). [NB we have already seen in Section 2 that head-movement and roll-up are subject to the same locality condition, giving rise to the HMC and FOFC respectively].
Input Generalisation (of operations, not features) does the rest: (28b) will give rise to harmonic head-finitality as rollup generalises; (28c) to harmonic head-initality as head-movement generalises.

So now the question becomes: what stops IG from creating maximal head-initality/finality everywhere, i.e. when do the mesoparameters come in?

Proposal: head-movement is required for labelling (defective goals do this; see Roberts 2010), and so is triggered by EM of some probing uF to α in (28a), in relation to which H₁ is a defective goal.

XP rollup fails where X is a defective goal, so rollup parameters reduce to negative values of head-movement parameters.

Possible typological consequence: head-movement systems have richer probes, able to license defective goals by head-movement \rightarrow rich functional structure in head-movement, i.e. head-initial systems?

5. On skewed typological distributions

Analysis of basic word-order types:

(29) a. **SOV:** rollup, i.e. not head movement (no defective goals). Degree of rollup may vary (Japanese vs German vs Latin);
b. **SVO:** no rollup but head-movement (at the lowest structural level). Degree of head-movement varies, giving different amounts of (deep) analyticity (Huang 2015);
c. **VSO:** two types. Type A similar to SVO, but with slightly higher V-movement (McCloskey 2017). Type B is VOS + object shift (Massam 2001: EPP_V), O smuggled over S. Low S \rightarrow ergative alignment; heavy restrictions on argument-extraction;
d. **VOS:** like Type B VSO without object shift.
e. **OVS:** like VOS but with low rollup. Other head-final properties (e.g. postpositions) < “harmonic” low rollup. Unclear how prevalent ergativity is;
f. **OSV:** extremely rare: WALS gives 4 languages out of 1,377. Derivable as OVS with (low) V-movement and fronting of remnant [O (V)].

Three questions:

(i) skewed frequencies (WALS Map/Feature/Chapter 81A; Dryer 2013);.

<table>
<thead>
<tr>
<th>Order</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOV</td>
<td>565</td>
<td>47.6%</td>
</tr>
<tr>
<td>SVO</td>
<td>488</td>
<td>41.1%</td>
</tr>
<tr>
<td>VSO</td>
<td>96</td>
<td>8.1%</td>
</tr>
<tr>
<td>VOS</td>
<td>25</td>
<td>2.1%</td>
</tr>
<tr>
<td>OVS</td>
<td>11</td>
<td>0.9%</td>
</tr>
<tr>
<td>OSV</td>
<td>4</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

(NB also 189 “no dominant order” languages; percentages are calculated on the total leaving these out, i.e. 1,188).

Why?

(ii) diachronic factors: do the distributions change significantly over time? (See WALS Feature/Chapter 81, Figure 1: Order of Subject, Object, and Verb in “Ancient” Languages, Dryer 2013).

(iii) links to other variant properties: see (29) for some speculations, but this is mostly left aside here.
5.1 Some general points

When we observe any kind of unexpectedly uneven distribution of properties we know to be variable, there are in principle four types of account we can give:

a. **It’s not true**: data like the above is misleading. Two versions of this: (i) the typologists’ answer: go and find more languages and you’ll see it’s not the case. (ii) the generativists’ answer: the analytical categories you’re dealing with are at the wrong level of abstraction. Get your analysis right and the skewing will disappear. [NB (i) and (ii) are not exclusive].

b. **Diachrony**: (i) deep history: processes of change cause oscillations in distributions – we happen to observe one particular skewing right now but that’s a product of our historical moment, rather like observing a continent at the South Pole: it doesn’t have to be there and won’t be if we wait long enough (interesting questions here about the Uniformitarian Principle: see Roberts 2017 for discussion). (ii) surface history: what if the Hixkaryana (who speak an OVS language) had colonised Europe (or Africa) and extirpated the local languages?

c. **Psycholinguistics**: maybe UG sees all word orders as equal but some are easier to process than others: see Hawkins (1994, 2004, 2014). NB, combining this with (b), we could think that some orders are easier to acquire, and therefore less subject to change and more easily spread through contact than others, giving rise over time to skewed distributions. The dispreferred orders are winnowed out of the “gene pool” (i.e. parameter pool) over time. NB the implication for deep history.

d. **Universal Grammar**: parameters come with built-in markedness preferences favouring certain types over others.

- NB the possibility of combined explanation: maybe (d) is right, but UG-preferred systems are easier to acquire and process (c) and so spread more readily giving rise to a certain skewing that oscillates over deep and surface history but remains broadly constant (b). Nichols (1992) can be read this way (although she does not advocate UG).
- It does now seem that large language families of the Indo-European/Afro-Asiatic/Austronesian type may be recent phenomena connected to technological advances (horses, agriculture, boats; Ringe 2013).
- But first we need to tackle (a).

5.2 Observing the typological variation

- How much credence should we attach to statistics like those for word-order types above? “to what extent can a sample of the languages that happen to be spoken now (and happen to be investigated) ever tell us anything about human language in general? The problem is that the current range of languages may not (and is indeed unlikely to) instantiate everything that is humanly possible because languages arise and die for reasons that have nothing to do with their structures” (Bickel 2017:20).

(30) General uniformity of relative frequencies of basic types (from Peeters 1991):
all of these surveys have two major things in common:
(i) the order of frequency: SOV > SVO > VSO > VOS > OVS > OSV;
(ii) SOV just beating SVO, a big gap to VSO, then the OS orders as minority patterns and O-initial extremely rare.

So the basic picture (at least at our historical moment, with the empirical resources available) is clear.

So: the typologists should of course continue to report more languages (especially with so many endangered) but it doesn’t look likely that the overall distribution will change.

[NB the question of patterning by genera: see Dryer 1992].

But what about the generativists’ point in (a, ii) above? We know for sure that SOV, SVO and VSO, at least, are non-uniform “types”.

5.3 A simple system of (meso-)parameters designed to capture the basic word orders

Six orders, so three binary options ($2^3 = 8$) with two excluded:

<table>
<thead>
<tr>
<th>Word Order</th>
<th>Ruhlen</th>
<th>Mallinson and Blake</th>
<th>Hawkins</th>
<th>Tomlin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>SOV</td>
<td>222</td>
<td>51</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>SVO</td>
<td>155</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>VSO</td>
<td>47</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>VOS</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>OVS</td>
<td>2</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>OSV</td>
<td>1</td>
<td>0.25</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Too simple: doesn’t capture preferences/frequencies, doesn’t capture known differences within types (VSO, SVO, etc.); the “VS” parameter is equivocal between V and VP-movement.
• We need something more:

(23b) Definition of mesoparameter:
Variant property holding across some phasal domains.
(31) Roll-up parameters in each main clausal domain (vP, TP, CP), repeated from (27):

a. **P1: vP-internal rollup**

 \[
 \begin{align*}
 Y^+/: & \quad [_{\text{vP}} \, _{\text{O V}} \, _{\text{v (VP)}}] \quad \text{CTOV (NB rollup at both VP and vP)} \\
 N^-/: & \quad [_{\text{vP}} \, \ldots \, _{\text{v (VP)}}] \quad \text{CTVO}
 \end{align*}
 \]

b. **P2: TP-internal rollup**

 \[
 \begin{align*}
 Y^+/: & \quad [_{\text{TP}} \, [_{\text{vP}} \, _{\text{O V}} \, _{\text{v (VP)}}] \, _{\text{T (vP)}}] \quad \text{COVT} \\
 N^-/: & \quad [_{\text{TP}} \, \ldots \, _{\text{T (vP)}}] \quad \text{(or = P1+)}
 \end{align*}
 \]

 [NB FOFC creates a dependency here: P2+ only if P1+/ & P2+]

c. **P3: CP-internal rollup**

 \[
 \begin{align*}
 Y^+/: & \quad [_{\text{CP}} \, [_{\text{TP}} \, [_{\text{vP}} \, _{\text{O V}} \, _{\text{v (VP)}}] \, _{\text{T (vP)}}] \, _{\text{C (TP)}}] \quad \text{OVTC} \\
 N^-/: & \quad [_{\text{CP}} \, \ldots \, _{\text{C (TP)}}] \quad \text{(or = P1+, or P1+ & P2+)}
 \end{align*}
 \]

 [NB only allowed if P1+ & P2+, FOFC again]

(32) V-movement parameters in each clausal domain:

a. **P4: V-movement in vP**

 \[
 \begin{align*}
 Y^+/: & \quad (S) \ldots \, \{_{\text{TMA}/\text{Neg}}\ldots \, _{\text{V+v O}} \\
 N^-/: & \quad (S) \ldots \, \{_{\text{TMA}/\text{Neg}}\ldots \, _{\text{v O}} \quad \text{(Huang-style “analyticity” effects)}
 \end{align*}
 \]

b. **P5: V-movement in TP**

 \[
 \begin{align*}
 Y^+/: & \quad (S) \ldots \, \{_{\text{TMA},\text{Neg},V}\ldots \, _{O} \quad \text{(Pollock/Schifano)} \\
 N^-/: & \quad \text{see P4} \quad \text{[NB HMC entails *P4- & P5+]}
 \end{align*}
 \]

1 If FOFC and the HMC are both cyclicity effects, then the implicational relations among P4/P5 (HMC) and those among P1/P2/P3 derive from the same thing: locality/cyclicity defined as in (20).

(33) Subject-placement parameters in each clausal domain:

a. **P7: Subject in vP**

 \[
 \begin{align*}
 Y^+/: & \quad \ldots \, [_{\text{vP S \ldots .}}] \quad \text{no EPP}_D \rightarrow \text{EPP}_V (*\text{in-situ}) \\
 N^-/: & \quad [_{\text{TP S \ldots .}}] \quad \text{EPP}_D \quad \text{(link to accusative vs ergative alignment?)}
 \end{align*}
 \]

b. **P8: Subject in TP**

 \[
 \begin{align*}
 Y^+/: & \quad [_{\text{TP S \ldots .}}] \quad \text{EPP}_D \quad \text{[NB P7 and P8 are just inverses, so almost a single EPP}_V/_D \text{ parameter: *P7- & P8- could follow from LA, but would be allowed if P1+; the result of LA is *P1- & P7- & P8-, hence P7 and P8 are separate parameters after all. LA may also rule out P7+ & P8+]}
 \end{align*}
 \]
c. **P9: Subject in CP**
Y/+: subject in left-periphery (obligatory topic or focus)
N/-: P7+ or P8+ or P1+ (see (b)).

(34) Object-shift (question of OS to T- or C-domains left open here):

P10: Object shift to vP edge
Y/+: \[vP \ O \ .. \ v \ .. \ [vP \ V \ (O)]\]
N/-: \[vP \ .. \ v \ .. \ [vP \ V \ O]\]

NB: in general we can leave aside P6 and P9, as these concern the left-periphery and “marked” word orders. The parameters which determine basic word order are thus P1–P5, P7, P8 and P10.

⇒ 8 parameters, so \(2^8 = 256\) possible combinations in principle, BUT we know the following, at least:

(35)a. \(^*\)P1– P2+
 (FOFC)
b. \(^*\)P2– P3+
 (FOFC)
c. \(^*\)P1– P3+
 (FOFC)
d. \(^*\)P1– P7– P8–
 (LA)
e. \(^*\)P4– P5+
 (HMC)
f. \(^*\)P7+ & P8+
 (See above)
g. \(^*\)(P1+ & P4+)
 (28)
h. \(^*\)(P2+ & P5+)
 (28)

5.4 **Addressing the skewed distribution in meso-parametric terms**

I. Which p-settings are required for a given order to be possible (are p-expressed by a given order; see Clark & Roberts 1993, Roberts 2019: 65, 76, 89, Longobardi & Roberts, in progress)?

II. Which p-settings are excluded as a consequences of (I)?

III. Which p-settings are allowed and what are the consequences?

(40) **SOV:**\[
\begin{array}{ccccccccc}
\text{P1} & \text{P2} & \text{P4} & \text{P5} & \text{P7} & \text{P8} & \text{P10} \\
+ & + & - & - & - & \pm & \pm & \text{ (4 derivations)} \\
+ & - & - & - & - & + & \pm & \text{ (2 derivations)} \\
- & - & \pm & - & - & - & + & \text{ (2 derivations)} \\
\end{array}
\]

- 8 derivations for SOV

(41) **SVO:**\[
\begin{array}{cccccc}
\text{P1} & \text{P2} & \text{P4} & \text{P5} & \text{P7} & \text{P8} \\
- & - & - & + & \pm & - \\
\end{array}
\]

\(\text{ (4 derivations)}\)

(42) **VSO:**\[
\begin{array}{cccccc}
\text{P1} & \text{P2} & \text{P4} & \text{P5} & \text{P7} & \text{P8} \\
- & - & - & + & ++ & - \\
\end{array}
\]

\(\text{ (2 derivations)}\)

(43) **VOS:**\[
\begin{array}{cccccc}
\text{P1} & \text{P2} & \text{P4} & \text{P5} & \text{P7} & \text{P8} \\
- & - & - & - & + & - \\
\end{array}
\]

\(\text{ (1 derivation)}\)

(44) **OVS:**\[
\begin{array}{cccccc}
\text{P1} & \text{P2} & \text{P4} & \text{P5} & \text{P7} & \text{P8} \\
+ & - & - & - & - & + \\
\end{array}
\]

\(\text{ (1 derivation)}\)

(45) **OSV:**\[
\begin{array}{cccccc}
\text{P1} & \text{P2} & \text{P4} & \text{P5} & \text{P7} & \text{P8} \\
+ & - & - & + & \pm & + \\
\end{array}
\]

\(\text{ (2 derivations!!)\)}

[NB here the left-periphery-related parameters P3, P6 and P9 have been left out for simplicity]
4. Conclusions

- If each derivational possibility is a type (a cluster of mesoparametric settings), then we have the right order of frequencies (more languages < more types < more derivational possibilities): SOV > SVO > VSO > VOS > OVS (except for OSV).
- But the ratio of languages to types, in terms of raw numbers, is badly off:
 - 8 SOV derivations for 565 languages: 70 languages per type;
 - 4 SVO ones for 488 languages: almost 120 languages per type;
 - 3 VSO ones for languages: 32 per type;
 - 1 for VOS: 25 per type.

Still too many SOV and SVO languages, but one more binary independent parameter for SOV and two more for SVO would bring us to 30-35 languages per type;

NB the rarer V-initial types are well-behaved: the limited areal and typological distribution of these languages may be giving us a clearer picture of type-distribution than the very widespread SOV/SVO ones.

BUT what’s so special about 30 ± 5 languages per type?
Now we look for diachronic/contact/markedness explanations.

6. Conclusions

- (23) is an improvement on (22);
- Parameters, domains and features drawn more tightly together;
- Uniform statements of parameters across domains;
- Potential for an approximately uniform notion of “word-order type.”

References

